

# **Results of Proficiency Test Total Metals in dried paint April 2023**

Organized by: Institute for Interlaboratory Studies

Spijkenisse, the Netherlands

Mrs. E.R. Montenij-Bos Author:

ing. R.J. Starink & ing. G.A. Oosterlaken-Buijs ing. A.S. Noordman-de Neef **Correctors:** 

Approved by:

Report: iis23V21

June 2023

### **CONTENTS**

| 1       | INTRODUCTION                                                       | . 3 |
|---------|--------------------------------------------------------------------|-----|
| 2       | SET UP                                                             | . 3 |
| 2.1     | ACCREDITATION                                                      | . 3 |
| 2.2     | PROTOCOL                                                           | . 3 |
| 2.3     | CONFIDENTIALITY STATEMENT                                          | . 4 |
| 2.4     | SAMPLES                                                            | . 4 |
| 2.5     | ANALYZES                                                           | . 5 |
| 3       | RESULTS                                                            | . 5 |
| 3.1     | STATISTICS                                                         | . 6 |
| 3.2     | GRAPHICS                                                           | . 6 |
| 3.3     | Z-SCORES                                                           | . 7 |
| 4       | EVALUATION                                                         | . 7 |
| 4.1     | EVALUATION PER SAMPLE AND PER ELEMENT                              | . 8 |
| 4.2     | PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES               | . 9 |
| 4.3     | COMPARISON OF THE PROFICIENCY TEST OF APRIL 2023 WITH PREVIOUS PTS | 10  |
| 4.4     | EVALUATION OF THE ANALYTICAL DETAILS                               | 11  |
| 5       | DISCUSSION                                                         | 12  |
| 6       | CONCLUSION                                                         | 12  |
|         |                                                                    |     |
|         |                                                                    |     |
|         | ndices:                                                            |     |
| 1.      | Data, statistical and graphic results                              |     |
| 2.      | Other reported elements                                            |     |
| 3.      | Analytical Details                                                 |     |
| 4.<br>- | Number of participants per country                                 |     |
| 5.      | Abbreviations and literature                                       | 40  |

#### 1 Introduction

Since 2008 the USA Consumer Product Safety Improvement Act (CPSIA, sec. 101) bans Lead in toys. This USA legislation reduces the amount of total Lead content in the substrates of children's products to 600 mg/kg by 2009 to 100 mg/kg by 2011 and the total Lead content in surface coatings or paint to 90 mg/kg by 2009.

Since 2008 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the determination of total Lead in dried paint every year. In 2015 it was decided to extend the scope with other heavy metals on request of several participants. During the annual proficiency testing program 2022/2023 it was decided to continue the proficiency test for the determination of Total Metals in dried paint.

In this interlaboratory study 94 laboratories in 28 countries registered for participation, see appendix 4 for the number of participants per country. In this report the results of the Total Metals in dried paint proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

### 2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory.

It was decided to send two different dried paint samples approximately 0.5 grams each and labelled #23550 and #23551 respectively.

The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

#### 2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accreditation scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

#### 2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

#### 2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

#### 2.4 SAMPLES

For the first sample a batch of light purple dried paint was selected which was artificially fortified with some elements. The milled paint batch was divided over 125 plastic bags of 0.5 gram each and labelled #23550. The batch for sample #23550 was used in a previous proficiency test on Total Metals in dried paint as sample #21561 in iis21V01. Therefore, homogeneity of the subsamples was assumed.

For the second sample a batch of gray dried paint was selected which was artificially fortified with some elements. The milled paint batch was divided over 125 plastic bags of 0.5 grams each and labelled #23551.

The homogeneity of the subsamples was checked by the determination of Cadmium and Mercury using an in-house test method on 8 stratified randomly selected subsamples.

|                 | Cadmium as Cd<br>in mg/kg | Mercury as Hg<br>in mg/kg |
|-----------------|---------------------------|---------------------------|
| Sample #23551-1 | 73.9                      | 138.3                     |
| Sample #23551-2 | 77.6                      | 140.6                     |
| Sample #23551-3 | 77.6                      | 138.5                     |
| Sample #23551-4 | 77.2                      | 139.6                     |
| Sample #23551-5 | 77.3                      | 141.5                     |
| Sample #23551-6 | 80.6                      | 144.1                     |
| Sample #23551-7 | 74.3                      | 139.6                     |
| Sample #23551-8 | 76.1                      | 140.6                     |

Table 1: homogeneity test results of subsamples #23551

From the above test results the repeatabilities were calculated and compared with 0.3 times the estimated reproducibility calculated with the Horwitz equation in agreement with the procedure of ISO13528, Annex B2 in the next table.

|                            | Cadmium as Cd<br>in mg/kg | Mercury as Hg<br>in mg/kg |
|----------------------------|---------------------------|---------------------------|
| r (observed)               | 5.9                       | 5.5                       |
| reference method           | Horwitz                   | Horwitz                   |
| 0.3 x R (reference method) | 5.4                       | 9.0                       |

Table 2: evaluation of the repeatabilities of subsamples #23551

The calculated repeatabilities are in agreement with 0.3 times the estimated reproducibilities calculated with the Horwitz equation. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one dried paint sample labelled #23550 and one dried paint sample labelled #23551 was sent on March 22, 2023.

### 2.5 ANALYZES

The participants were requested to determine on samples #23550 and #23551 the total concentration of Aluminum as Al, Antimony as Sb, Arsenic as As, Cadmium as Cd, Chromium as Cr, Cobalt as Co, Copper as Cu, Lead as Pb, Manganese as Mn, Mercury as Hg, Nickel as Ni, Selenium as Se, Strontium as Sr and Zinc as Zn. It was also requested to report if the laboratory was accredited for the determined elements and to report some analytical details.

It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the test results, but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

#### 3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The reported test results are tabulated per determination in appendices 1 and 2 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the result tables in appendices 1 and 2. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

#### 3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data.

According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by F(0.01) for the Rosner's test. Stragglers are marked by F(0.01) for the Dixon's test, by F(0.01) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT the criterion of ISO13528, paragraph 9.2.1, was met for all evaluated tests. Therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8

### 3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method.

Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation.

### 3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements (derived from e.g. ISO or ASTM test methods), the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former iis proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z_{\text{(target)}} = (test result - average of PT) / target standard deviation
```

The  $z_{(target)}$  scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

```
|z| < 1 good
1 < |z| < 2 satisfactory
2 < |z| < 3 questionable
3 < |z| unsatisfactory
```

#### 4 EVALUATION

In this proficiency test some problems were encountered with the dispatch of the samples. Eight participants reported test results after the final reporting date and four other participants did not report any test results. Not all participants were able to report all tests requested. In total 90 participants reported 580 numerical test results. Observed were 22 outlying test results, which is 3.8%. In proficiency tests outlier percentages of 3% - 7.5% are quite normal.

Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

#### 4.1 EVALUATION PER SAMPLE AND PER ELEMENT

In this section the reported test results are discussed per sample and per element. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data in appendix 1. The abbreviations, used in these tables, are explained in appendix 5.

Unfortunately, a suitable reference test method providing the precision data is not available for the determination of total Metals in dried paint. Therefore, the calculated reproducibility was compared against the estimated reproducibility calculated with the Horwitz equation.

### sample #23550

- Total Aluminum as AI: This determination may be problematic. No statistical outliers were observed. The calculated reproducibility is not at all in agreement with the estimated reproducibility calculated with the Horwitz equation. It was decided not to calculate z-scores due to the large variation of the group compared to the target reproducibility.
- <u>Total Cobalt as Co</u>: This determination may be problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the estimated reproducibility calculated with the Horwitz equation.
- <u>Total Copper as Cu</u>: This determination may be problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the estimated reproducibility calculated with the Horwitz equation.
- <u>Total Lead as Pb</u>: This determination may be problematic. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the estimated reproducibility calculated with the Horwitz equation.
- <u>Total Manganese as Mn</u>: This determination may be problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the estimated reproducibility calculated with the Horwitz equation.
- <u>Total Strontium as Sr</u>: This determination may be problematic. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the estimated reproducibility calculated with the Horwitz equation.

The majority of the participants agreed on a concentration near or below the limit of detection for all other requested elements mentioned in paragraph 2.5. Therefore, no z-scores are calculated for these elements. The reported results are given in appendix 2.

### sample #23551

- Total Aluminum as AI: This determination may be problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not at all in agreement with the estimated reproducibility calculated with the Horwitz equation. It was decided not to calculate z-scores due to the large variation of the group compared to the target reproducibility.
- <u>Total Cadmium as Cd</u>: This determination is not problematic. Four statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the estimated reproducibility calculated with the Horwitz equation.
- Total Cobalt as Co: This determination may be problematic. No statistical outliers were observed. The calculated reproducibility is not at all in agreement with the estimated reproducibility calculated with the Horwitz equation. It was decided not to calculate z-scores due to the large variation of the group compared to the target reproducibility.
- <u>Total Mercury as Hg</u>: This determination may be problematic for some participants. Six statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the estimated reproducibility calculated with the Horwitz equation.
- <u>Total Nickel as Ni</u>: This determination may be problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the estimated reproducibility calculated with the Horwitz equation.

The majority of the participants agreed on a concentration near or below the limit of detection for all other requested elements mentioned in paragraph 2.5. Therefore, no z-scores are calculated for these elements. The reported results are given in appendix 2.

#### 4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 \* standard deviation) and the target reproducibility derived from reference method are presented in the next tables.

| Element               | unit  | n  | average | 2.8 * sd | R(target) |
|-----------------------|-------|----|---------|----------|-----------|
| Total Aluminum as Al  | mg/kg | 35 | 2386    | 2571     | (332)     |
| Total Cobalt as Co    | mg/kg | 49 | 167.1   | 66.3     | 34.7      |
| Total Copper as Cu    | mg/kg | 45 | 48.3    | 21.3     | 12.1      |
| Total Lead as Pb      | mg/kg | 86 | 106.8   | 28.1     | 23.7      |
| Total Manganese as Mn | mg/kg | 44 | 34.3    | 13.7     | 9.0       |
| Total Strontium as Sr | mg/kg | 33 | 504     | 120      | 89        |

Table 3: reproducibilities of tests on sample #23550

For results between brackets no z-scores are calculated.

| Element              | unit  | n  | average | 2.8 * sd | R(target) |
|----------------------|-------|----|---------|----------|-----------|
| Total Aluminum as Al | mg/kg | 34 | 9222    | 3594     | (1046)    |
| Total Cadmium as Cd  | mg/kg | 72 | 73.5    | 15.3     | 17.2      |
| Total Cobalt as Co   | mg/kg | 51 | 442     | 409      | (79.2)    |
| Total Mercury as Hg  | mg/kg | 59 | 99.0    | 21.2     | 22.2      |
| Total Nickel as Ni   | mg/kg | 50 | 1574    | 428      | 233       |

Table 4: reproducibilities of tests on sample #23551

For results between brackets no z-scores are calculated.

Without further statistical calculations it can be concluded that for most elements mentioned above there is not a good compliance of the group of participants with the estimated target reproducibilities calculated with the Horwitz equation. The problematic tests have been discussed in paragraph 4.1.

### 4.3 COMPARISON OF THE PROFICIENCY TEST OF APRIL 2023 WITH PREVIOUS PTS

|                                    | April<br>2023 | April<br>2022 | April<br>2021 | April<br>2020 | April<br>2019 |
|------------------------------------|---------------|---------------|---------------|---------------|---------------|
| Number of reporting laboratories   | 90            | 96            | 109           | 110           | 113           |
| Number of test results             | 580           | 558           | 658           | 770           | 417           |
| Number of statistical outliers     | 22            | 9             | 26            | 27            | 22            |
| Percentage of statistical outliers | 3.8%          | 1.6%          | 4.0%          | 3.5%          | 5.3%          |

Table 5: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determination of elements in the proficiency test was compared to uncertainties observed in its PTs over the years, expressed as relative standard deviation (RSD) of the PTs, see next table.

| Element         | April<br>2023 | April<br>2022 | April<br>2021 | April<br>2020 | 2009-2019 | Target  |
|-----------------|---------------|---------------|---------------|---------------|-----------|---------|
| Total Aluminum  | 14-38%        | 11-21%        | 19-33%        | 12-18%        |           | 5 - 10% |
| Total Antimony  |               |               |               |               | 15%       | 5 - 10% |
| Total Arsenic   |               |               | 7%            |               | 9%        | 5 - 10% |
| Total Cadmium   | 7%            |               |               |               | 7-8%      | 5 - 10% |
| Total Chromium  |               |               | 11%           | 10%           | 9-12%     | 5 - 10% |
| Total Cobalt    | 14-33%        | 6-11%         | 12%           | 11%           | 7-30%.    | 5 - 10% |
| Total Copper    | 16%           | 9%            | 16%           | 10%           |           | 5 - 10% |
| Total Lead      | 9%            | 8-10%         | 10%           | 10%           | 6-10%     | 5 - 10% |
| Total Manganese | 14%           | 12%           | 10-12%        | 10-11%        |           | 5 - 10% |
| Total Mercury   | 8%            |               |               |               | 14-18%.   | 5 - 10% |
| Total Nickel    | 10%           |               |               |               | 5-13%.    | 5 - 10% |
| Total Selenium  |               | 10%           |               | 10%           |           | 5 - 10% |
| Total Strontium | 9%            | 13%           | 9-11%         | 9-10%         |           | 5 - 10% |

Table 6: development of uncertainties over the years

The relative standard deviation observed in this PT are in line with the relative standard deviations observed in previous PTs.

Sample #23550 was used in a previous iis proficiency test on Total Metals in dried paint as sample #21561 in PT iis21V01. A comparison is made between the two proficiency tests. The PT findings of sample #23550 are in line with those of sample #21561.

| Element         | unit  | sa | ample #235 | 50      | sa  | ample #2156 | 61      |
|-----------------|-------|----|------------|---------|-----|-------------|---------|
| Element         | unit  | n  | average    | R(calc) | n   | average     | R(calc) |
| Total Aluminum  | mg/kg | 35 | 2386       | 2571    | 41  | 2820        | 2601    |
| Total Cobalt    | mg/kg | 49 | 167.1      | 66.3    | 65  | 167.3       | 56.3    |
| Total Copper    | mg/kg | 45 | 48.3       | 21.3    | 53  | 50.5        | 22.1    |
| Total Lead      | mg/kg | 86 | 106.8      | 28.1    | 106 | 107.9       | 29.2    |
| Total Manganese | mg/kg | 44 | 34.3       | 13.7    | 51  | 35.6        | 12.0    |
| Total Strontium | mg/kg | 33 | 504        | 120     | 42  | 510         | 163     |

Table 7: comparison of sample #23550 with #21561.

### 4.4 EVALUATION OF THE ANALYTICAL DETAILS

Many different test methods were mentioned by the participants. The American CPSC-CH-E1003-09 method "For determining Lead (Pb) in Paint and Other Similar Surface Coatings" was used by 53% of the participants. Also, other methods were reported and sometimes the method used was depending on the metal to be determined. Some of these test methods are not designed to determine metals in dried paint. For example, EN16711-1 is for metals in textile and IEC62321-5 for metals in electro technical products.

For this PT also some analytical details were requested, see appendix 3 for the reported details. Based on the answers given by the participants the following can be summarized:

- 96% of the reporting participants mentioned that they are accredited for the determination of Total Metals in dried paint.
- 19% used less than 100 mg as sample intake, 62% used 100 mg, 19% used more than 100 mg as sample intake.
- All laboratories used a strong acid like Nitric Acid (or Nitric Acid in combination with Hydrochloric Acid and/or Hydrofluoric Acid) to digest the dried paint. 66% of the participants used an acid solution with a concentration ≥ 65%.

As the majority of the group follow the same analytical procedures no separate statistical analysis has been performed.

#### 5 DISCUSSION

In this PT the average of the homogeneity test results are not in line with the average (consensus value) from the PT results. There are several reasons for this. First, the goal of the homogeneity testing is very different from the goal of the evaluation of the reported PT results. In order to prove the homogeneity of the PT samples, a test method is selected with a high precision (smallest variation). The accuracy (trueness) of the test method is less relevant.

Secondly, the homogeneity testing is done by one laboratory only. The test results of this (ISO/IEC 17025 accredited) laboratory will have a bias (systematic deviation) depending on the test method used. The desire to detect small variations between the PT samples leads to the use of a sensitive test method with high precision, which may be a test method with significant bias.

Also each test result reported by the laboratories that participate in the PT will have a bias. However, some will have a positive bias and others a negative bias. These different biases compensate each other in the PT average (consensus value). Therefore, the PT consensus value may deviate from the average of the homogeneity test. At the same time the accuracy of the PT consensus value is more reliable than the accuracy of the average of the results of the homogeneity test.

When the concentration limit recommended in UN Environment's "Model Law and Guidance for Regulating Lead Paint" 90 mg/kg total Lead is taken into account 92% of the participants would have rejected sample #23550 based on the total Lead content and all reporting laboratories would have accepted sample #23551 based on the total Lead content.

### 6 CONCLUSION

In general the participants were able to detect the added elements in both samples in this proficiency test. However, for most of the elements, artificially added or already part of the paint matrix, the group of participants did not met the target reproducibility.

Each participating laboratory will have to evaluate its performance in this study and decide about any corrective actions if necessary. Therefore, participation on a regular basis in this scheme could be helpful to improve the performance and thus increase of the quality of the analytical results.

### **APPENDIX 1**

Determination of Total Aluminum as Al on sample #23550; results in mg/kg

| lab          | nination of Total Alu<br>method      | value                    | mark | z(targ) | remarks              |
|--------------|--------------------------------------|--------------------------|------|---------|----------------------|
| 210          |                                      |                          |      |         |                      |
| 339<br>551   | In house<br>CPSC-CH-E1003-09.1       | 1354<br>397.62           |      |         |                      |
| 623          | In house                             | 2415.57                  |      |         |                      |
| 840          | In house                             | 3171.40                  |      |         |                      |
| 841<br>1051  | ISO8124-5                            | 3427<br>                 |      |         |                      |
| 1213         |                                      | 3290.58                  |      |         |                      |
| 2121         |                                      |                          |      |         |                      |
| 2132         |                                      |                          |      |         |                      |
| 2137<br>2138 |                                      |                          |      |         |                      |
| 2139         |                                      |                          |      |         |                      |
| 2156         | EPA3052                              | 2358.00                  |      |         |                      |
| 2165<br>2170 |                                      |                          |      |         |                      |
| 2182         |                                      |                          |      |         |                      |
| 2184         |                                      |                          |      |         |                      |
| 2216<br>2256 |                                      |                          |      |         |                      |
| 2258         | 16CFR1303                            | not detected             |      |         |                      |
| 2287         |                                      |                          |      |         |                      |
| 2290         | CPSC-CH-E1003-09                     | 2648.4                   |      |         |                      |
| 2294<br>2296 | In house                             | <br>4083.7972            |      |         |                      |
| 2301         |                                      |                          |      |         |                      |
| 2310         | EN16711-1                            | 2198                     |      |         |                      |
| 2311<br>2314 | CPSC-CH-E1003-09<br>CPSC-CH-E1003-09 | 2265.78<br>2084          |      |         |                      |
| 2326         | CPSC-CH-E1003-09                     | 2803.21                  |      |         |                      |
| 2330         | CPSC-CH-E1003-09.1                   | not determined           |      |         |                      |
| 2347<br>2350 | CPSC-CH-E1003-09                     | <br>1968                 |      |         |                      |
| 2355         | 01 00 011 2 1000 00                  |                          |      |         |                      |
| 2357         | CPSC-CH-E1003-09                     | not analyzed             |      |         |                      |
| 2358<br>2365 | CPSC-CH-E1003-09                     | na<br>                   |      |         |                      |
| 2366         | C02.2.2                              | out cap                  |      |         |                      |
| 2369         | EPA3052                              | not analyzed             |      |         |                      |
| 2370<br>2373 | CPSC-CH-E1003-09                     | not applicable           |      |         |                      |
| 2375         | EN16711-1                            | 2460                     |      |         |                      |
| 2380         |                                      |                          |      |         |                      |
| 2381<br>2382 | CPSC-CH-E1003-09<br>CPSC-CH-E1003-09 | 2385.10<br>no capability |      |         |                      |
| 2384         | EPA3051                              | 1236.63                  |      |         |                      |
| 2385         | EPA3052                              | 3954                     |      |         |                      |
| 2392         | IEC62321-5                           | 1400.50                  |      |         |                      |
| 2406<br>2410 |                                      |                          |      |         |                      |
| 2424         | ASTM F2853                           | 662.9                    | С    |         | first reported 24.65 |
| 2426<br>2429 | CPSC-CH-E1003-09                     | <br>3117 0               |      |         |                      |
| 2429<br>2431 | In house                             | 3117.0<br>1541.09        |      |         |                      |
| 2449         |                                      |                          |      |         |                      |
| 2453         |                                      |                          |      |         |                      |
| 2459<br>2460 |                                      |                          |      |         |                      |
| 2480         |                                      |                          |      |         |                      |
| 2492         |                                      |                          |      |         |                      |
| 2503<br>2504 | EPA3052                              | <br>3723.072             |      |         |                      |
| 2511         |                                      |                          |      |         |                      |
| 2529         | 0000 011 51000 00                    |                          |      |         |                      |
| 2567<br>2572 | CPSC-CH-E1003-09                     | 1972.0<br>               |      |         |                      |
| 2573         |                                      |                          |      |         |                      |
| 2582         | CPSC-CH-E1003-09                     | not analyzed             |      |         |                      |
| 2590<br>2622 | CPSC-CH-E1003-09                     | 2061.23                  |      |         |                      |
| 2622<br>2678 |                                      |                          |      |         |                      |
| 2734         | EN16711-1                            | 1283.72                  |      |         |                      |
| 2741         | CPSC-CH-E1003-09                     | 2717.3                   |      |         |                      |
| 2799         |                                      |                          |      |         |                      |

| lab  | method           | value        | mark    | z(targ) | remarks |
|------|------------------|--------------|---------|---------|---------|
| 2834 | ISO11885         | 2920         |         |         |         |
| 2835 | ISO62321         | 1393.12      |         |         |         |
| 2864 |                  |              |         |         |         |
| 2912 | CPSC-CH-E1003-09 | 1326.058     |         |         |         |
| 2976 |                  |              |         |         |         |
| 2977 | CPSC-CH-E1003-09 | 3565         |         |         |         |
| 3015 | ASTM F963        | 3012         |         |         |         |
| 3100 | CPSC-CH-E1003-09 | 3058.10      |         |         |         |
| 3110 |                  |              |         |         |         |
| 3116 |                  |              |         |         |         |
| 3118 |                  |              |         |         |         |
| 3172 |                  |              |         |         |         |
| 3182 | CPSC-CH-E1003-09 | not analyzed |         |         |         |
| 3185 | CPSC-CH-E1003-09 | 3166.37      |         |         |         |
| 3199 | EPA3051          | Not tested   |         |         |         |
| 3214 | EPA3052          | 2100.56      |         |         |         |
| 3218 |                  |              |         |         |         |
| 3225 |                  |              |         |         |         |
| 3228 |                  |              |         |         |         |
| 8005 |                  |              |         |         |         |
|      |                  | 014          |         |         |         |
|      | normality        | OK           |         |         |         |
|      | n                | 35           |         |         |         |
|      | outliers         | 0            |         |         |         |
|      | mean (n)         | 2386.317     | DOD 0   | 00/     |         |
|      | st.dev. (n)      | 918.1488     | RSD = 3 | 8%      |         |
|      | R(calc.)         | 2570.817     |         |         |         |
|      | st.dev.(Horwitz) | (118.4266)   |         |         |         |
|      | R(Horwitz)       | (331.595)    |         |         |         |
|      | r ((riorwitz)    | (001.000)    |         |         |         |





## Determination of Total Cobalt as Co on sample #23550; results in mg/kg

| lab          | method                       | value           | mark    | z(targ)       | remarks                                |
|--------------|------------------------------|-----------------|---------|---------------|----------------------------------------|
| 210          | CPSC-CH-E1003-09             | 181.572         |         | 1.17          |                                        |
| 339          | In house                     | 165             |         | -0.17         |                                        |
| 551          | CPSC-CH-E1003-09.1           | 280.413         | R(0.01) | 9.15          |                                        |
| 623          | In house                     | 143.5           |         | -1.91         |                                        |
| 840          | In house                     | 178.590282      |         | 0.93          |                                        |
| 841          | ISO8124-5                    | 175             |         | 0.64          |                                        |
| 1051         |                              | 450.54          |         |               |                                        |
| 1213         |                              | 150.54          |         | -1.34         |                                        |
| 2121         |                              |                 |         |               |                                        |
| 2132<br>2137 | IEC62321-5                   | <br>195.5       |         | 2.29          |                                        |
| 2138         | CPSC-CH-E1003-09             | 142.7           |         | -1.97         |                                        |
| 2139         | CPSC-CH-E1003-09             | 188             |         | 1.69          |                                        |
| 2156         | EPA3052                      | 180.75          |         | 1.10          |                                        |
| 2165         |                              |                 |         |               |                                        |
| 2170         |                              |                 |         |               |                                        |
| 2182         |                              |                 |         |               |                                        |
| 2184         |                              |                 |         |               |                                        |
| 2216         |                              |                 |         |               |                                        |
| 2256         |                              |                 |         |               |                                        |
| 2258         | 16CFR1303                    | not detected    |         |               | Possibly a false negative test result? |
| 2287         | CDCC CH E4000 00             | 160.1           |         | 0.57          |                                        |
| 2290<br>2294 | CPSC-CH-E1003-09             | 160.1           |         | -0.57<br>     |                                        |
| 2294<br>2296 | In house                     | 187.5898        |         | 1.65          |                                        |
| 2301         | iii iiouse                   | 107.3090        |         | 1.05          |                                        |
| 2310         | EN16711-1                    | 180             |         | 1.04          |                                        |
| 2311         | CPSC-CH-E1003-09             | 190.23          |         | 1.87          |                                        |
| 2314         | CPSC-CH-E1003-09             | 165             |         | -0.17         |                                        |
| 2326         | CPSC-CH-E1003-09             | 172.35          |         | 0.42          |                                        |
| 2330         | CPSC-CH-E1003-09.1           | not determined  |         |               |                                        |
| 2347         |                              |                 |         |               |                                        |
| 2350         | CPSC-CH-E1003-09             | 142.3           |         | -2.01         |                                        |
| 2355         | 0000 011 54000 00            |                 |         |               |                                        |
| 2357         | CPSC-CH-E1003-09             | not analyzed    |         |               |                                        |
| 2358<br>2365 | CPSC-CH-E1003-09             | na<br>          |         |               |                                        |
| 2366         | C02.2.2                      | out cap         |         |               |                                        |
| 2369         | EPA3052                      | not analyzed    |         |               |                                        |
| 2370         | ,                            |                 |         |               |                                        |
| 2373         | CPSC-CH-E1003-09             | not applicable  |         |               |                                        |
| 2375         | EN16711-1                    | 161             |         | -0.49         |                                        |
| 2380         | CPSC-CH-E1003-09             | 137.26          |         | -2.41         |                                        |
| 2381         | CPSC-CH-E1003-09             | 135.50          |         | -2.56         |                                        |
| 2382         | CPSC-CH-E1003-09             | no capability   |         |               |                                        |
| 2384         | EPA3051                      | 124.98          |         | -3.41         |                                        |
| 2385         | EPA3052                      | 172             |         | 0.39          |                                        |
| 2392         | IEC62321-5                   | 118.63          |         | -3.92         |                                        |
| 2406<br>2410 |                              |                 |         |               |                                        |
| 2424         | ASTM F2853                   | 193.99          | С       | 2.17          | first reported 35.91                   |
| 2426         | ASTM E1645                   | 172.71          | •       | 0.45          |                                        |
| 2429         | CPSC-CH-E1003-09             | 170.3           |         | 0.26          |                                        |
| 2431         | In house                     | 193.95          |         | 2.17          |                                        |
| 2449         | ASTM E1645                   | 153.97          |         | -1.06         |                                        |
| 2453         |                              |                 |         |               |                                        |
| 2459         | EN16711-1                    | 149             |         | -1.46         |                                        |
| 2460         |                              |                 |         |               |                                        |
| 2480         |                              |                 |         |               |                                        |
| 2492         |                              |                 |         |               |                                        |
| 2503<br>2504 | EPA3052                      | 105.653         |         | -4.97         |                                        |
| 2504<br>2511 | CPSC-CH-E1003-09             | 185.169         |         | -4.97<br>1.46 |                                        |
| 2529         | 5. 55 5H L 1000-03           |                 |         | 1.40          |                                        |
| 2567         | CPSC-CH-E1003-09             | 157.6           |         | -0.77         |                                        |
| 2572         | 2 3.1 = 1300 00              |                 |         |               |                                        |
| 2573         |                              |                 |         |               |                                        |
| 2582         | CPSC-CH-E1003-09             | 188.22          |         | 1.70          |                                        |
| 2590         | CPSC-CH-E1003-09             | 154.86          |         | -0.99         |                                        |
| 2622         |                              |                 |         |               |                                        |
| 2678         | EN40744 4                    | 470.00          |         |               |                                        |
| 2734         | EN16711-1                    | 170.00          |         | 0.23          |                                        |
| 2741<br>2799 | CPSC-CH-E1003-09<br>In house | 159.1<br>216.17 |         | -0.65<br>3.96 |                                        |
| 2199         | iii iiouse                   | Z 10.11         |         | 5.90          |                                        |

| method           | value                                                                                                                                                                                                                        | mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | z(targ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | remarks                                |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| ISO11885         | 194                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| CPSC-CH-E1003-09 | 204.882                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| ASTM F963        | 112.4                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| CPSC-CH-E1003-09 | 161.4                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| ASTM F963        | 177                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| CPSC-CH-E1003-09 | 182.24                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
|                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| CPSC-CH-E1003-09 | 182.8340                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|                  | 187.41                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|                  | not analyzed                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
|                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
|                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| EN16711-1        | 165.1                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
|                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
|                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| normality        | OK                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| n                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| outliers         | 1                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| mean (n)         | 167.125                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| st.dev. (n)      | 23.6819                                                                                                                                                                                                                      | RSD = 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |
| R(calc.)         | 66.309                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| st.dev.(Horwitz) | 12.3754                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| R(Horwitz)       | 34.651                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
|                  | ISO62321  CPSC-CH-E1003-09 ASTM F963 CPSC-CH-E1003-09 ASTM F963 CPSC-CH-E1003-09  ISO8124-5 CPSC-CH-E1003-09 CPSC-CH-E1003-09 EPA3051 EPA3052 EN16711-1  normality n outliers mean (n) st.dev. (n) R(calc.) st.dev.(Horwitz) | ISO11885 ISO62321 ISO62321 IT8.63 CPSC-CH-E1003-09 ASTM F963 CPSC-CH-E1003-09 I61.4 ASTM F963 CPSC-CH-E1003-09 I82.24 CPSC-CH-E1003-09 I82.8340 ISO8124-5 ISO8124-5 CPSC-CH-E1003-09 CPSC-CH-E1003-09 CPSC-CH-E1003-09 IF 82.8340 ISO8124-5 IF 7.41 IN 10 t ested IF A3052 IF A3053 IF A3054 IF A3054 IF A3055 IF A305 | ISO11885 ISO62321 ISO62321 IT8.63 CPSC-CH-E1003-09 ASTM F963 CPSC-CH-E1003-09 I61.4 ASTM F963 CPSC-CH-E1003-09 I82.24 CPSC-CH-E1003-09 I82.8340 ISO8124-5 ISO8124-5 ISO8124-5 ISO8124-5 ISO8124-5 ISO8124-5 ISO8124-1 ISO8124-5 ISO8124-5 ISO8124-1 ISO8124 ISO8124-1 INOTIC ISO8124 ISO8124-1 ISO8124 ISO8124-1 ISO8124 ISO | ISO11885 194 2.17 ISO62321 178.63 0.93 |





## Determination of Total Copper as Cu on sample #23550; results in mg/kg

| lab          | method                               | value                | mark    | z(targ)        | remarks                                 |
|--------------|--------------------------------------|----------------------|---------|----------------|-----------------------------------------|
| 210          | CPSC-CH-E1003-09                     | 43.851               | IIIair  | -1.04          | Tomates                                 |
| 339          | In house                             | 44                   |         | -1.01          |                                         |
| 551          | CPSC-CH-E1003-09.1                   | 71.15                |         | 5.29           |                                         |
| 623          | In house                             | 49.63                |         | 0.30           |                                         |
| 840<br>841   | In house                             | 37.055234<br>56      |         | -2.62<br>1.77  |                                         |
| 841<br>1051  | ISO8124-5                            | 56<br>               |         | 1.77<br>       |                                         |
| 1213         |                                      | 38.87                |         | -2.20          |                                         |
| 2121         |                                      |                      |         |                |                                         |
| 2132         |                                      |                      |         |                |                                         |
| 2137         | IEC62321-5                           | 57.9                 |         | 2.21           |                                         |
| 2138         | CPSC-CH-E1003-09                     | 44.6                 |         | -0.87          |                                         |
| 2139<br>2156 | CPSC-CH-E1003-09<br>EPA3052          | 59<br>58.64          |         | 2.47<br>2.39   |                                         |
| 2165         | LI A3002                             |                      |         | 2.55           |                                         |
| 2170         |                                      |                      |         |                |                                         |
| 2182         |                                      |                      |         |                |                                         |
| 2184         |                                      |                      |         |                |                                         |
| 2216         |                                      |                      |         |                |                                         |
| 2256<br>2258 | 16CFR1303                            | not detected         |         |                | Possibly a false negative test result?  |
| 2287         | 10011(1003                           |                      |         |                | i ossibiy a laise hegalive lest lesult! |
| 2290         | CPSC-CH-E1003-09                     | 46.4                 |         | -0.45          |                                         |
| 2294         |                                      |                      |         |                |                                         |
| 2296         | In house                             | 55.8393              |         | 1.74           |                                         |
| 2301         | EN16711 1                            | <br>4E 4             |         | 0.69           |                                         |
| 2310<br>2311 | EN16711-1<br>CPSC-CH-E1003-09        | 45.4<br>40.10        |         | -0.68<br>-1.91 |                                         |
| 2311         | CPSC-CH-E1003-09<br>CPSC-CH-E1003-09 | 43.3                 |         | -1.91<br>-1.17 |                                         |
| 2326         | CPSC-CH-E1003-09                     | 50.31                |         | 0.46           |                                         |
| 2330         | CPSC-CH-E1003-09.1                   | not determined       |         |                |                                         |
| 2347         | 0000 011 7121111                     |                      |         |                |                                         |
| 2350         | CPSC-CH-E1003-09                     | 44.42                |         | -0.91          |                                         |
| 2355<br>2357 | CPSC-CH-E1003-09                     | not analyzed         |         |                |                                         |
| 2357<br>2358 | CPSC-CH-E1003-09<br>CPSC-CH-E1003-09 | not analyzed<br>na   |         |                |                                         |
| 2365         |                                      |                      |         |                |                                         |
| 2366         | C02.2.2                              | out cap              |         |                |                                         |
| 2369         | EPA3052                              | not analyzed         |         |                |                                         |
| 2370         | ODCO OH E4000 00                     |                      |         |                |                                         |
| 2373<br>2375 | CPSC-CH-E1003-09<br>EN16711-1        | not applicable<br>46 |         | -0.54          |                                         |
| 2375         | CPSC-CH-E1003-09                     | 53.64                |         | 1.23           |                                         |
| 2381         | CPSC-CH-E1003-09                     | 54.30                |         | 1.38           |                                         |
| 2382         | CPSC-CH-E1003-09                     | no capability        |         |                |                                         |
| 2384         | EPA3051                              | 41.63                |         | -1.56          |                                         |
| 2385         | EPA3052                              | 46.3                 |         | -0.47          |                                         |
| 2392<br>2406 | IEC62321-5                           | 28.61<br>            |         | -4.57<br>      |                                         |
| 2406         |                                      |                      |         |                |                                         |
| 2424         | ASTM F2853                           | 48.85                | С       | 0.12           | first reported 0                        |
| 2426         | ASTM E1645                           | 43.75                |         | -1.06          | •                                       |
| 2429         | CPSC-CH-E1003-09                     | 46.6                 |         | -0.40          |                                         |
| 2431         | In house                             | 50.19                |         | 0.43           |                                         |
| 2449<br>2453 | ASTM E1645                           | 49.27<br>            |         | 0.21           |                                         |
| 2453         |                                      |                      |         |                |                                         |
| 2460         |                                      |                      |         |                |                                         |
| 2480         | In house                             | 60                   |         | 2.70           |                                         |
| 2492         |                                      |                      |         |                |                                         |
| 2503         | EDA 2052                             | <br>4E 4G4           |         | 0.67           |                                         |
| 2504<br>2511 | EPA3052                              | 45.464<br>           |         | -0.67<br>      |                                         |
| 2511         |                                      |                      |         |                |                                         |
| 2567         | CPSC-CH-E1003-09                     | 60.0                 |         | 2.70           |                                         |
| 2572         |                                      |                      |         |                |                                         |
| 2573         | 0000 011 51000                       |                      |         |                |                                         |
| 2582         | CPSC-CH-E1003-09                     | not analyzed         |         | <br>1 75       |                                         |
| 2590<br>2622 | CPSC-CH-E1003-09                     | 40.79<br>            |         | -1.75<br>      |                                         |
| 2622<br>2678 |                                      |                      |         |                |                                         |
| 2734         | EN16711-1                            | 82.53                | R(0.01) | 7.92           |                                         |
| 2741         | CPSC-CH-E1003-09                     | <100                 | , ,     |                |                                         |
| 2799         | In house                             | 51.16                | С       | 0.65           | first reported 114.79                   |

| lab  | method           | value        | mark      | z(targ) | remarks |
|------|------------------|--------------|-----------|---------|---------|
| 2834 | ISO11885         | 49.6         |           | 0.29    |         |
| 2835 | ISO62321         | 53.15        |           | 1.11    |         |
| 2864 |                  |              |           |         |         |
| 2912 | CPSC-CH-E1003-09 | 54.809       |           | 1.50    |         |
| 2976 | ASTM F963        | 42.2         |           | -1.42   |         |
| 2977 | CPSC-CH-E1003-09 | 48.9         |           | 0.13    |         |
| 3015 | ASTM F963        | 49           |           | 0.15    |         |
| 3100 | CPSC-CH-E1003-09 | 50.36        |           | 0.47    |         |
| 3110 |                  |              |           |         |         |
| 3116 |                  |              |           |         |         |
| 3118 | CPSC-CH-E1003-09 | 34.5018      |           | -3.21   |         |
| 3172 |                  |              |           |         |         |
| 3182 | CPSC-CH-E1003-09 | not analyzed |           |         |         |
| 3185 | CPSC-CH-E1003-09 | 48.14        |           | -0.05   |         |
| 3199 | EPA3051          | Not tested   |           |         |         |
| 3214 | EPA3052          | 46.05        |           | -0.53   |         |
| 3218 | EN16711-1        | 45.8         |           | -0.59   |         |
| 3225 |                  |              |           |         |         |
| 3228 |                  |              |           |         |         |
| 8005 |                  |              |           |         |         |
|      | normality        | suspect      |           |         |         |
|      | n                | 45           |           |         |         |
|      | outliers         | 1            |           |         |         |
|      | mean (n)         | 48.345       |           |         |         |
|      | st.dev. (n)      | 7.5928       | RSD = 169 | %       |         |
|      | R(calc.)         | 21.260       |           |         |         |
|      | st.dev.(Horwitz) | 4.3147       |           |         |         |
|      | R(Horwitz)       | 12.081       |           |         |         |
|      | ` '              |              |           |         |         |





## Determination of Total Lead as Pb on sample #23550; results in mg/kg

| lab          | method                               | value         | mark       | z(targ)       | remarks                       |
|--------------|--------------------------------------|---------------|------------|---------------|-------------------------------|
| 210          | CPSC-CH-E1003-09                     | 117.373       |            | 1.25          |                               |
| 339          | In house                             | 105           | С          | -0.22         | first reported "not detected" |
| 551          | CPSC-CH-E1003-09.1                   | 101.86        |            | -0.59         | ·                             |
| 623          | In house                             | 97.61         |            | -1.09         |                               |
| 840          | In house                             | 101.459125    |            | -0.63         |                               |
| 841          | ISO8124-5                            | 110           |            | 0.37          |                               |
| 1051         | CPSC-CH-E1003-09                     | 96.8          |            | -1.19         |                               |
| 1213         | 0000 011 51000 00                    | 106.12        | •          | -0.08         |                               |
| 2121         | CPSC-CH-E1003-09                     | 116           | С          | 1.08          | first reported 137.92         |
| 2132         | CPSC-CH-E1003-09                     | 109.56        |            | 0.32          |                               |
| 2137         | IEC62321-5                           | 114.5         |            | 0.91          |                               |
| 2138         | CPSC-CH-E1003-09                     | 112.1         |            | 0.62          |                               |
| 2139<br>2156 | CPSC-CH-E1003-09<br>EPA3052          | 116<br>109.30 |            | 1.08<br>0.29  |                               |
| 2165         | ASTM F963                            | 109.50        |            | -0.70         |                               |
| 2170         | CPSC-CH-E1003-09                     | 91.17         |            | -1.85         |                               |
| 2182         | CPSC-CH-E1003-09                     | 99.09         |            | -0.91         |                               |
| 2184         | CPSC-CH-E1003-09                     | 97.2          |            | -1.14         |                               |
| 2216         | ASTM F963                            | 120           |            | 1.56          |                               |
| 2256         | CPSC-CH-E1003-09                     | 102.0         |            | -0.57         |                               |
| 2258         | 16CFR1303                            | 123.89        | С          | 2.02          | first reported 0.0124         |
| 2287         | EPA3052                              | 121.9         |            | 1.78          |                               |
| 2290         | CPSC-CH-E1003-09                     | 102.1         |            | -0.56         |                               |
| 2294         | CPSC-CH-E1003-09                     | 103.6496      |            | -0.38         |                               |
| 2296         | In house                             | 123.6258      |            | 1.98          |                               |
| 2301         |                                      |               |            |               |                               |
| 2310         | EN16711-1                            | 101           |            | -0.69         |                               |
| 2311         | CPSC-CH-E1003-09                     | 102.28        |            | -0.54         |                               |
| 2314         | CPSC-CH-E1003-09                     | 99.5          |            | -0.87         |                               |
| 2326         | CPSC-CH-E1003-09                     | 105.95        | C D(0.01)  | -0.10         | first reported EO 20          |
| 2330<br>2347 | CPSC-CH-E1003-09.1                   | 53.54         | C,R(0.01)  | -6.30<br>0.37 | first reported 59.28          |
| 2350         | CPSC-CH-E1003-09<br>CPSC-CH-E1003-09 | 110<br>105.9  |            | -0.11         |                               |
| 2355         | EPA3052                              | 110           |            | 0.37          |                               |
| 2357         | CPSC-CH-E1003-09                     | 111.4         |            | 0.54          |                               |
| 2358         | CPSC-CH-E1003-09                     | 102.40        |            | -0.52         |                               |
| 2365         | CPSC-CH-E1002-08                     | 112           |            | 0.61          |                               |
| 2366         | C02.2.2                              | 110           |            | 0.37          |                               |
| 2369         | EPA3052                              | 113.25        |            | 0.76          |                               |
| 2370         | CPSC-CH-E1003-09                     | 109           |            | 0.26          |                               |
| 2373         | CPSC-CH-E1003-09                     | 108.39        |            | 0.18          |                               |
| 2375         | EN16711-1                            | 102           |            | -0.57         |                               |
| 2380         | CPSC-CH-E1003-09                     | 101.07        |            | -0.68         |                               |
| 2381         | CPSC-CH-E1003-09                     | 95.20         |            | -1.37         |                               |
| 2382         | CPSC-CH-E1003-09                     | 111           |            | 0.49          |                               |
| 2384         | EPA3051                              | 75.74         |            | -3.67         |                               |
| 2385         | EPA3052                              | 108           | 0.7/0.04   | 0.14          |                               |
| 2392         | IEC62321-5                           | 54.96         | C,R(0.01)  | -6.13         | first reported 63.55          |
| 2406<br>2410 | ASTM F963<br>CPSC-CH-E1003-09        | 109.40        |            | 0.30          |                               |
| 2410         | ASTM F2853                           | 108<br>129.79 | С          | 0.14<br>2.71  | first reported 15.56          |
| 2424         | ASTM F2655<br>ASTM E1645             | 98.86         | C          | -0.94         | ilist reported 15.50          |
| 2429         | CPSC-CH-E1003-09                     | 103.9         |            | -0.35         |                               |
| 2431         | In house                             | 115.88        |            | 1.07          |                               |
| 2449         | ASTM E1645                           | 102           |            | -0.57         |                               |
| 2453         | CPSC-CH-E1003-09                     | 105.3         |            | -0.18         |                               |
| 2459         | EN16711-1                            | 95.66         |            | -1.32         |                               |
| 2460         |                                      |               |            |               |                               |
| 2480         | In house                             | 130.7         |            | 2.82          |                               |
| 2492         | CPSC-CH-E1003-09                     | 104.9520      |            | -0.22         |                               |
| 2503         | ASTM F963                            | 118           | 0.5/0.5 ** | 1.32          | r                             |
| 2504         | EPA3052                              | 53.128        | C,R(0.01)  | -6.35         | first reported 76.263         |
| 2511         | CPSC-CH-E1003-09                     | 118.165       |            | 1.34          |                               |
| 2529<br>2567 | CPSC-CH-E1003-09                     | 114.61        |            | 0.92          |                               |
| 2567<br>2572 | CPSC-CH-E1003-09                     | 108.6<br>     |            | 0.21          |                               |
| 2572<br>2573 |                                      |               |            |               |                               |
| 2573<br>2582 | CPSC-CH-E1003-09                     | 112.07        |            | 0.62          |                               |
| 2590         | CPSC-CH-E1003-09                     | 104.04        |            | -0.33         |                               |
| 2622         | CPSC-CH-E1002-08                     | 84.95         |            | -2.59         |                               |
| 2678         | CPSC-CH-E1003-09.1                   | 107.3         |            | 0.06          |                               |
| 2734         | EN16711-1                            | 133.71        |            | 3.18          |                               |
| 2741         | CPSC-CH-E1003-09                     | 97.2          |            | -1.14         |                               |
| 2799         | In house                             | 108.82        |            | 0.24          |                               |
|              |                                      |               |            |               |                               |

| lab  | method           | value    | mark     | z(targ) | remarks |  |
|------|------------------|----------|----------|---------|---------|--|
| 2834 | ISO11885         | 121      | IIIGIN   | 1.67    | Tomarko |  |
| 2835 | ISO62321         | 109.89   |          | 0.36    |         |  |
| 2864 | CPSC-CH-E1003-09 | 85.50    |          | -2.52   |         |  |
| 2912 | CPSC-CH-E1003-09 | 117.547  |          | 1.27    |         |  |
| 2976 | ASTM F963        | 84.1     |          | -2.69   |         |  |
| 2977 | CPSC-CH-E1003-09 | 93.6     |          | -1.56   |         |  |
| 3015 | ASTM F963        | 108      |          | 0.14    |         |  |
| 3100 | CPSC-CH-E1003-09 | 112.12   |          | 0.63    |         |  |
| 3110 | ASTM F963        | 96       |          | -1.28   |         |  |
| 3116 |                  | 96.40    |          | -1.23   |         |  |
| 3118 | CPSC-CH-E1003-09 | 106.7221 |          | -0.01   |         |  |
| 3172 | ISO8124-5        | 117.86   |          | 1.30    |         |  |
| 3182 | CPSC-CH-E1003-09 | 107.4    |          | 0.07    |         |  |
| 3185 | CPSC-CH-E1003-09 | 105.98   |          | -0.10   |         |  |
| 3199 | EPA3051          | 106.88   |          | 0.01    |         |  |
| 3214 | EPA3052          | 98.68    |          | -0.96   |         |  |
| 3218 | EN16711-1        | 109.4    |          | 0.30    |         |  |
| 3225 | CPSC-CH-E1003-09 | 101.1    |          | -0.68   |         |  |
| 3228 | CPSC-CH-E1003-09 | 103.98   |          | -0.34   |         |  |
| 8005 |                  |          |          |         |         |  |
|      | normality        | suspect  |          |         |         |  |
|      | n                | 86       |          |         |         |  |
|      | outliers         | 3        |          |         |         |  |
|      | mean (n)         | 106.830  |          |         |         |  |
|      | st.dev. (n)      | 10.0323  | RSD = 9% |         |         |  |
|      | R(calc.)         | 28.091   |          |         |         |  |
|      | st.dev.(Horwitz) | 8.4618   |          |         |         |  |
|      | R(Horwitz)       | 23.693   |          |         |         |  |





## Determination of Total Manganese as Mn on sample #23550; results in mg/kg

|              |                                      |                        |          | "             |                      |
|--------------|--------------------------------------|------------------------|----------|---------------|----------------------|
| 210          | method                               | value                  | mark     | z(targ)       | remarks              |
| 339          | In house                             | 34                     |          | -0.08         |                      |
| 551          | CPSC-CH-E1003-09.1                   | 42.41                  |          | 2.53          |                      |
| 623          | In house                             | 32.19                  |          | -0.64         |                      |
| 840          | In house                             | 39.1604                |          | 1.52          |                      |
| 841<br>1051  | ISO8124-5                            | 38                     |          | 1.16<br>      |                      |
| 1213         |                                      | 28.32                  |          | -1.84         |                      |
| 2121         |                                      |                        |          |               |                      |
| 2132         | JE000004 E                           |                        |          |               |                      |
| 2137<br>2138 | IEC62321-5<br>CPSC-CH-E1003-09       | 41.1<br>32.5           |          | 2.13<br>-0.55 |                      |
| 2139         | CPSC-CH-E1003-09                     | 40                     |          | 1.78          |                      |
| 2156         | EPA3052                              | 36.20                  |          | 0.60          |                      |
| 2165         |                                      |                        |          |               |                      |
| 2170         |                                      |                        |          |               |                      |
| 2182<br>2184 |                                      |                        |          |               |                      |
| 2216         |                                      |                        |          |               |                      |
| 2256         |                                      |                        |          |               |                      |
| 2258         | 16CFR1303                            | not detected           |          |               |                      |
| 2287<br>2290 | CPSC-CH-E1003-09                     | 33.8                   |          | <br>-0.14     |                      |
| 2290         | OI 00-011-E1000-08                   | 33.0<br>               |          | -0.14         |                      |
| 2296         | In house                             | 40.1062                |          | 1.82          |                      |
| 2301         | =114=411                             |                        |          |               |                      |
| 2310         | EN16711-1                            | 36<br>24 17            |          | 0.54          |                      |
| 2311<br>2314 | CPSC-CH-E1003-09<br>CPSC-CH-E1003-09 | 34.17<br>36.4          |          | -0.03<br>0.67 |                      |
| 2326         | CPSC-CH-E1003-09                     | 36.87                  |          | 0.81          |                      |
| 2330         | CPSC-CH-E1003-09.1                   | not determined         |          |               |                      |
| 2347         | 0000 011 51000 00                    |                        |          |               |                      |
| 2350<br>2355 | CPSC-CH-E1003-09                     | 32.6                   |          | -0.51         |                      |
| 2355         | CPSC-CH-E1003-09                     | not analyzed           |          |               |                      |
| 2358         | CPSC-CH-E1003-09                     | na                     |          |               |                      |
| 2365         |                                      |                        |          |               |                      |
| 2366         | C02.2.2                              | out cap                |          |               |                      |
| 2369<br>2370 | EPA3052                              | not analyzed           |          |               |                      |
| 2373         | CPSC-CH-E1003-09                     | not applicable         |          |               |                      |
| 2375         | EN16711-1                            | 30                     |          | -1.32         |                      |
| 2380         | CPSC-CH-E1003-09                     | 29.80                  |          | -1.38         |                      |
| 2381         | CPSC-CH-E1003-09                     | 30.50                  |          | -1.17         |                      |
| 2382<br>2384 | CPSC-CH-E1003-09<br>EPA3051          | no capability<br>27.24 |          | <br>-2.18     |                      |
| 2385         | EPA3052                              | 38.5                   |          | 1.32          |                      |
| 2392         | IEC62321-5                           | 20.99                  |          | -4.12         |                      |
| 2406         |                                      |                        |          |               |                      |
| 2410<br>2424 | ASTM F2853                           | 36.85                  |          | 0.81          |                      |
| 2424<br>2426 | ASTM F2655<br>ASTM E1645             | 25.7                   |          | -2.66         |                      |
| 2429         | CPSC-CH-E1003-09                     | 36.9                   |          | 0.82          |                      |
| 2431         | In house                             | 39.43                  |          | 1.61          |                      |
| 2449         | ASTM E1645                           | 31.67                  |          | -0.80         |                      |
| 2453<br>2459 | EN16711-1                            | 33.4                   |          | <br>-0.27     |                      |
| 2460         |                                      |                        |          | -0.27         |                      |
| 2480         |                                      |                        |          |               |                      |
| 2492         |                                      |                        |          |               |                      |
| 2503<br>2504 | EPA3052                              | 29.900                 |          | -1.35         |                      |
| 2511         | LI AUUZ                              | 29.900                 |          | -1.33         |                      |
| 2529         |                                      |                        |          |               |                      |
| 2567         | CPSC-CH-E1003-09                     | 33.9                   |          | -0.11         |                      |
| 2572         |                                      |                        |          |               |                      |
| 2573<br>2582 | CPSC-CH-E1003-09                     | <br>25.49              |          | <br>-2.72     |                      |
| 2590         | CPSC-CH-E1003-09                     | 33.46                  |          | -0.25         |                      |
| 2622         |                                      |                        |          |               |                      |
| 2678         | EN14074 ( )                          |                        | D (0.6=) |               |                      |
| 2734<br>2741 | EN16711-1<br>CPSC-CH-E1003-09        | 53.80<br><50           | R(0.05)  | 6.07<br>      |                      |
| 2741         | In house                             | 35.23                  | С        | 0.30          | first reported 49.07 |
| 2834         | ISO11885                             | 41                     | -        | 2.09          | ,                    |
|              |                                      |                        |          |               |                      |

| lab  | method           | value        | mark      | z(targ) | remarks |
|------|------------------|--------------|-----------|---------|---------|
| 2835 | ISO62321         | 36.30        |           | 0.63    |         |
| 2864 |                  |              |           |         |         |
| 2912 | CPSC-CH-E1003-09 | 40.666       |           | 1.99    |         |
| 2976 | ASTM F963        | 24.1         |           | -3.15   |         |
| 2977 | CPSC-CH-E1003-09 | 36.6         |           | 0.73    |         |
| 3015 | ASTM F963        | 36           |           | 0.54    |         |
| 3100 | CPSC-CH-E1003-09 | 38.23        |           | 1.23    |         |
| 3110 |                  |              |           |         |         |
| 3116 |                  |              |           |         |         |
| 3118 | CPSC-CH-E1003-09 | 33.3570      |           | -0.28   |         |
| 3172 |                  |              |           |         |         |
| 3182 | CPSC-CH-E1003-09 | not analyzed |           |         |         |
| 3185 | CPSC-CH-E1003-09 | 36.28        |           | 0.63    |         |
| 3199 | EPA3051          | Not tested   |           |         |         |
| 3214 | EPA3052          | 31.95        |           | -0.72   |         |
| 3218 |                  |              |           |         |         |
| 3225 |                  |              |           |         |         |
| 3228 |                  |              |           |         |         |
| 8005 |                  |              |           |         |         |
|      |                  | 011          |           |         |         |
|      | normality        | OK           |           |         |         |
|      | n                | 44           |           |         |         |
|      | outliers         | 1            |           |         |         |
|      | mean (n)         | 34.256       | DOD 440   | ,       |         |
|      | st.dev. (n)      | 4.8820       | RSD = 149 | 6       |         |
|      | R(calc.)         | 13.670       |           |         |         |
|      | st.dev.(Horwitz) | 3.2200       |           |         |         |
|      | R(Horwitz)       | 9.016        |           |         |         |





## Determination of Total Strontium as Sr on sample #23550; results in mg/kg

| lab          | method                         | value           | mark                 | z(targ)        | remarks                                |
|--------------|--------------------------------|-----------------|----------------------|----------------|----------------------------------------|
| 210          |                                |                 | 0.0(0.04)            | 0.40           | first year arts of 254                 |
| 339<br>551   | In house<br>CPSC-CH-E1003-09.1 | 238<br>244.84   | C,R(0.01)<br>R(0.01) | -8.42<br>-8.21 | first reported 251                     |
| 623          | In house                       | 474.29          | 11(0.01)             | -0.21          |                                        |
| 840          | In house                       | 474.832         |                      | -0.94          |                                        |
| 841          | ISO8124-5                      | 522             |                      | 0.55           |                                        |
| 1051         |                                |                 |                      |                |                                        |
| 1213         |                                | 460.05          |                      | -1.40          |                                        |
| 2121         |                                |                 |                      |                |                                        |
| 2132<br>2137 | IEC62321-5                     | <br>537.7       |                      | 1.05           |                                        |
| 2138         | 1002021-0                      |                 |                      | 1.00           |                                        |
| 2139         |                                |                 |                      |                |                                        |
| 2156         | EPA3052                        | 530.25          |                      | 0.82           |                                        |
| 2165         |                                |                 |                      |                |                                        |
| 2170         |                                |                 |                      |                |                                        |
| 2182<br>2184 |                                |                 |                      |                |                                        |
| 2216         |                                |                 |                      |                |                                        |
| 2256         |                                |                 |                      |                |                                        |
| 2258         | 16CFR1303                      | not detected    |                      |                | Possibly a false negative test result? |
| 2287         |                                |                 |                      |                | - <del>-</del>                         |
| 2290         | CPSC-CH-E1003-09               | 494.1           |                      | -0.33          |                                        |
| 2294         | In house                       | <br>447 2117    |                      | 1 01           |                                        |
| 2296<br>2301 | In house                       | 447.2117<br>    |                      | -1.81<br>      |                                        |
| 2310         | EN16711-1                      | 514             |                      | 0.30           |                                        |
| 2311         | CPSC-CH-E1003-09               | 557.91          |                      | 1.69           |                                        |
| 2314         | CPSC-CH-E1003-09               | 518             |                      | 0.43           |                                        |
| 2326         | CPSC-CH-E1003-09               | 513.34          |                      | 0.28           |                                        |
| 2330         | CPSC-CH-E1003-09.1             | not determined  |                      |                |                                        |
| 2347<br>2350 |                                |                 |                      |                |                                        |
| 2355         |                                |                 |                      |                |                                        |
| 2357         | CPSC-CH-E1003-09               | not analyzed    |                      |                |                                        |
| 2358         | CPSC-CH-E1003-09               | na              |                      |                |                                        |
| 2365         | 000 0 0                        |                 |                      |                |                                        |
| 2366         | C02.2.2                        | out cap         |                      |                |                                        |
| 2369<br>2370 | EPA3052                        | not analyzed    |                      |                |                                        |
| 2373         | CPSC-CH-E1003-09               | not applicable  |                      |                |                                        |
| 2375         | EN16711-1                      | 527             |                      | 0.71           |                                        |
| 2380         |                                |                 |                      |                |                                        |
| 2381         | CPSC-CH-E1003-09               | 419.35          |                      | -2.69          |                                        |
| 2382<br>2384 | CPSC-CH-E1003-09               | no capability   |                      | <br>-1.62      |                                        |
| 2384<br>2385 | EPA3051<br>EPA3052             | 453.20<br>455   |                      | -1.62<br>-1.56 |                                        |
| 2392         | IEC62321-5                     | Not analyzed    |                      | -1.50          |                                        |
| 2406         | <del>-</del>                   |                 |                      |                |                                        |
| 2410         |                                |                 | _                    |                |                                        |
| 2424         | ASTM F2853                     | 544.83          | С                    | 1.28           | first reported 84.88                   |
| 2426<br>2429 | CPSC-CH-E1003-09               | <br>504.1       |                      | -0.01          |                                        |
| 2429         | In house                       | 504.1<br>573.66 |                      | 2.19           |                                        |
| 2449         | //0400                         |                 |                      |                |                                        |
| 2453         |                                |                 |                      |                |                                        |
| 2459         |                                |                 |                      |                |                                        |
| 2460         |                                |                 |                      |                |                                        |
| 2480<br>2492 |                                |                 |                      |                |                                        |
| 2492<br>2503 |                                |                 |                      |                |                                        |
| 2504         | EPA3052                        | 271.303         | C,R(0.01)            | -7.37          | first reported 351.498                 |
| 2511         |                                |                 | . , ,                |                | ·                                      |
| 2529         | 0000 011 -1111                 |                 |                      |                |                                        |
| 2567         | CPSC-CH-E1003-09               | 433.8           |                      | -2.23          |                                        |
| 2572<br>2573 |                                |                 |                      |                |                                        |
| 2573<br>2582 | CPSC-CH-E1003-09               | 607.74          |                      | 3.26           |                                        |
| 2590         | CPSC-CH-E1003-09               | 453.11          |                      | -1.62          |                                        |
| 2622         |                                |                 |                      |                |                                        |
| 2678         |                                |                 |                      |                |                                        |
| 2734         | EN16711-1                      | 522.00          |                      | 0.55           |                                        |
| 2741         | CPSC-CH-E1003-09               | 498.7           |                      | -0.18          |                                        |
| 2799         |                                |                 |                      |                |                                        |

| lab  | method           | value        | mark     | z(targ) | remarks |
|------|------------------|--------------|----------|---------|---------|
| 2834 | ISO11885         | 560          |          | 1.76    | _       |
| 2835 | ISO62321         | 514.93       |          | 0.33    |         |
| 2864 |                  |              |          |         |         |
| 2912 | CPSC-CH-E1003-09 | 484.064      |          | -0.64   |         |
| 2976 |                  |              |          |         |         |
| 2977 | CPSC-CH-E1003-09 | 446.8        |          | -1.82   |         |
| 3015 | ASTM F963        | 516.5        |          | 0.38    |         |
| 3100 | CPSC-CH-E1003-09 | 530.59       |          | 0.83    |         |
| 3110 |                  |              |          |         |         |
| 3116 |                  |              |          |         |         |
| 3118 | CPSC-CH-E1003-09 | 533.5592     |          | 0.92    |         |
| 3172 |                  |              |          |         |         |
| 3182 | CPSC-CH-E1003-09 | not analyzed |          |         |         |
| 3185 | CPSC-CH-E1003-09 | 521.78       |          | 0.55    |         |
| 3199 | EPA3051          | Not tested   |          |         |         |
| 3214 | EPA3052          | 502.82       |          | -0.05   |         |
| 3218 |                  |              |          |         |         |
| 3225 |                  |              |          |         |         |
| 3228 |                  |              |          |         |         |
| 8005 |                  |              |          |         |         |
|      | normality        | ОК           |          |         |         |
|      | n                | 33           |          |         |         |
|      | outliers         | 3            |          |         |         |
|      | mean (n)         | 504.461      |          |         |         |
|      | st.dev. (n)      | 43.0212      | RSD = 9% |         |         |
|      | R(calc.)         | 120.459      |          |         |         |
|      | st.dev.(Horwitz) | 31.6324      |          |         |         |
|      | R(Horwitz)       | 88.571       |          |         |         |
|      | ((IOIIIIL)       | 00.07 1      |          |         |         |





## Determination of Total Aluminum as Al on sample #23551; results in mg/kg

| loh          | mathod                               | value                   | mork      | 7/40==\ | romarke                 |
|--------------|--------------------------------------|-------------------------|-----------|---------|-------------------------|
| 210          | method                               | value                   | mark      | z(targ) | remarks                 |
| 339          | In house                             | 12109                   | _,        |         |                         |
| 551<br>623   | CPSC-CH-E1003-09.1<br>In house       | 18460.22<br>8986.29     | R(0.01)   |         |                         |
| 840          | In house                             | 10458.20                |           |         |                         |
| 841          | ISO8124-5                            | 9152                    |           |         |                         |
| 1051         | EN16711 1/ISO11005                   | 9016 17                 |           |         |                         |
| 1213<br>2121 | EN16711-1/ISO11885                   | 8916.17<br>             |           |         |                         |
| 2132         |                                      |                         |           |         |                         |
| 2137         |                                      |                         |           |         |                         |
| 2138<br>2139 |                                      |                         |           |         |                         |
| 2156         | EPA3052                              | 8959.00                 |           |         |                         |
| 2165         |                                      |                         |           |         |                         |
| 2170<br>2182 |                                      |                         |           |         |                         |
| 2184         |                                      |                         |           |         |                         |
| 2216         |                                      |                         |           |         |                         |
| 2256<br>2258 | 16CFR1303                            | not detected            |           |         |                         |
| 2287         |                                      |                         |           |         |                         |
| 2290         | CPSC-CH-E1003-09                     | 10267.3                 |           |         |                         |
| 2294<br>2296 | In house                             | <br>9774.0898           |           |         |                         |
| 2301         | III NOUGO                            |                         |           |         |                         |
| 2310         | EN16711-1                            | 8800                    |           |         |                         |
| 2311<br>2314 | CPSC-CH-E1003-09<br>ISO8124-5        | 8934.51<br>8454         |           |         |                         |
| 2326         | CPSC-CH-E1003-09                     | 10582.95                |           |         |                         |
| 2330         | CPSC-CH-E1003-09.1                   | not determined          |           |         |                         |
| 2347<br>2350 | CPSC-CH-E1003-09                     | 9826                    |           |         |                         |
| 2355         | 01 00 011 2 1000 00                  |                         |           |         |                         |
| 2357         | CPSC-CH-E1003-09                     | not analyzed            |           |         |                         |
| 2358<br>2365 | CPSC-CH-E1003-09                     | na<br>                  |           |         |                         |
| 2366         | ASTM F963                            | out cap                 |           |         |                         |
| 2369         | EPA3052                              | not analyzed            |           |         |                         |
| 2370<br>2373 | CPSC-CH-E1003-09                     | not applicable          |           |         |                         |
| 2375         | EN16711-1                            | 8530                    |           |         |                         |
| 2380         | CDCC CU E4002 00                     | <br>9748.50             |           |         |                         |
| 2381<br>2382 | CPSC-CH-E1003-09<br>IEC62321-4/5     | no capability           |           |         |                         |
| 2384         | EPA3051                              | 6250.18                 |           |         |                         |
| 2385         | EPA3052                              | 10400                   |           |         |                         |
| 2392<br>2406 | IEC62321-5                           | 6923.68<br>             |           |         |                         |
| 2410         |                                      |                         |           |         |                         |
| 2424<br>2426 | ASTM F2853                           | 6768.1<br>              | С         |         | first reported 228.46   |
| 2420         | CPSC-CH-E1003-09                     | 9754.0                  |           |         |                         |
| 2431         | In house                             | 7332.51                 |           |         |                         |
| 2449<br>2453 |                                      |                         |           |         |                         |
| 2453<br>2459 |                                      |                         |           |         |                         |
| 2460         |                                      |                         |           |         |                         |
| 2480<br>2492 | In house                             | 10650                   |           |         |                         |
| 2492<br>2503 |                                      |                         |           |         |                         |
| 2504         | EPA3052                              | 45608.800               | C,R(0.01) |         | first reported 4702.360 |
| 2511<br>2529 |                                      |                         |           |         |                         |
| 2529<br>2567 | CPSC-CH-E1003-09                     | 9236.5                  |           |         |                         |
| 2572         |                                      |                         |           |         |                         |
| 2573<br>2582 | CPSC-CH-E1003-09                     | not analyzed            |           |         |                         |
| 2502<br>2590 | CPSC-CH-E1003-09<br>CPSC-CH-E1003-09 | not analyzed<br>7415.50 |           |         |                         |
| 2622         |                                      |                         |           |         |                         |
| 2678<br>2734 | EN16711-1                            | <br>8213.70             |           |         |                         |
| 2734<br>2741 | CPSC-CH-E1003-09                     | 8356.7                  |           |         |                         |
| 2799         |                                      |                         |           |         |                         |
|              |                                      |                         |           |         |                         |

| lab          | method           | value        | mark      | z/tara\ | remarks   |
|--------------|------------------|--------------|-----------|---------|-----------|
| 2834         | ISO11885         | 10200        | illain    | z(targ) | IGIIIQINƏ |
| 2835         | IEC62321         | 8997.15      |           |         |           |
| 2864         | 12002321         | 0997.13      |           |         |           |
| 2912         | CPSC-CH-E1003-09 | 10026.59     |           |         |           |
| 2976         | CF3C-CH-E1003-09 | 10020.39     |           |         |           |
| 2977         |                  | 9433         |           |         |           |
| 3015         | ASTM F963        | 9245         |           |         |           |
| 3100         | EN16711-1        | 9820.70      |           |         |           |
| 3110         | EN 107 11-1      |              |           |         |           |
| 3116         |                  |              |           |         |           |
|              |                  |              |           |         |           |
| 3118<br>3172 |                  |              |           |         |           |
|              | CDCC CU E4002 00 |              |           |         |           |
| 3182         | CPSC-CH-E1003-09 | not analyzed |           |         |           |
| 3185         | CPSC-CH-E1003-09 | 9748.06      |           |         |           |
| 3199         | EPA3051          | Not tested   |           |         |           |
| 3214         | EPA3052          | 11292.49     |           |         |           |
| 3218         |                  |              |           |         |           |
| 3225         |                  |              |           |         |           |
| 3228         |                  |              |           |         |           |
| 8005         |                  |              |           |         |           |
|              |                  |              |           |         |           |
|              | normality        | OK           |           |         |           |
|              | n                | 34           |           |         |           |
|              | outliers         | 2            |           |         |           |
|              | mean (n)         | 9222.408     |           |         |           |
|              | st.dev. (n)      | 1283.6207    | RSD = 14% |         |           |
|              | R(calc.)         | 3594.138     |           |         |           |
|              | st.dev.(Horwitz) | (373.4185)   |           |         |           |
|              | R(Horwitz)       | (1045.572)   |           |         |           |
|              |                  |              |           |         |           |





## Determination of Total Cadmium as Cd on sample #23551; results in mg/kg

| lab          | method                         | value          | mark      | z(targ)       | remarks                                     |
|--------------|--------------------------------|----------------|-----------|---------------|---------------------------------------------|
| 210          | In house                       | 70.641         |           | -0.47         |                                             |
| 339          | In house                       | 62             | С         | -1.87         | first reported 58                           |
| 551          | CPSC-CH-E1003-09.1             | 88.895         |           | 2.50          |                                             |
| 623          | In house                       | 75.95          |           | 0.40          |                                             |
| 840          | In house                       | 73.936777      |           | 0.07          |                                             |
| 841          | ISO8124-5                      | 75<br>         |           | 0.24          |                                             |
| 1051         | EN16711 1/ISO1100E             |                |           | 0.01          |                                             |
| 1213<br>2121 | EN16711-1/ISO11885             | 73.42          |           | -0.01<br>     |                                             |
| 2132         | CPSC-CH-E1003-09               | 68.80          |           | -0.76         |                                             |
| 2132         | IEC62321-5                     | 71.7           |           | -0.70         |                                             |
| 2138         | CPSC-CH-E1003-09               | 73.9           |           | 0.06          |                                             |
| 2139         | CPSC-CH-E1003-09               | 76             |           | 0.40          |                                             |
| 2156         | EPA3052                        | 72.90          |           | -0.10         |                                             |
| 2165         | ASTM F963                      | 76.5           |           | 0.49          |                                             |
| 2170         |                                |                |           |               |                                             |
| 2182         | EN1122                         | 72.5           |           | -0.16         |                                             |
| 2184         | CPSC-CH-E1003-09               | 72.9           |           | -0.10         |                                             |
| 2216         | ASTM F963                      | 78             |           | 0.73          |                                             |
| 2256         | 100ED 1000                     |                |           |               | B 41 (1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| 2258         | 16CFR1303                      | not detected   |           | 0.47          | Possibly a false negative test result?      |
| 2287         | EPA3052                        | 74.58          |           | 0.17          |                                             |
| 2290         | CPSC-CH-E1003-09               | 71.2           |           | -0.37         |                                             |
| 2294<br>2296 | In house                       | <br>76.5166    |           | 0.49          |                                             |
| 2301         | III House                      | 70.5100        |           | 0.49          |                                             |
| 2310         | EN16711-1                      | 74             |           | 0.08          |                                             |
| 2311         | CPSC-CH-E1003-09               | 70.16          |           | -0.54         |                                             |
| 2314         | ISO8124-5                      | 76             |           | 0.40          |                                             |
| 2326         | CPSC-CH-E1003-09               | 72.38          |           | -0.18         |                                             |
| 2330         | CPSC-CH-E1003-09.1             | not determined |           |               |                                             |
| 2347         |                                |                |           |               |                                             |
| 2350         | CPSC-CH-E1003-09               | 71.37          |           | -0.35         |                                             |
| 2355         | EPA3052                        | 73             |           | -0.08         |                                             |
| 2357         | CPSC-CH-E1003-09               | 74.7           |           | 0.19          |                                             |
| 2358         | CPSC-CH-E1003-09               | 76.51          |           | 0.49          |                                             |
| 2365         | CPSC-CH-E1002-08               | 76.7           |           | 0.52          |                                             |
| 2366<br>2369 | ASTM F963<br>EPA3052           | 74<br>74.08    |           | 0.08<br>0.09  |                                             |
| 2370         | EPA3052<br>EPA3052             | 74.06<br>72.9  |           | -0.10         |                                             |
| 2373         | CPSC-CH-E1003-09               | 77.19          |           | 0.60          |                                             |
| 2375         | EN16711-1                      | 72             |           | -0.24         |                                             |
| 2380         | CPSC-CH-E1003-09               | 70.34          |           | -0.51         |                                             |
| 2381         | CPSC-CH-E1003-09               | 68.70          |           | -0.78         |                                             |
| 2382         | IEC62321-4/5                   | 77             |           | 0.57          |                                             |
| 2384         | EPA3051                        | 58.95          |           | -2.36         |                                             |
| 2385         | EPA3052                        | 78.0           |           | 0.73          |                                             |
| 2392         | IEC62321-5                     | 40.12          | C,R(0.01) | -5.42         | first reported 50.19                        |
| 2406         | ASTM F963                      | 65.78          |           | -1.25         |                                             |
| 2410         | ACTM F00F0                     |                | D(0.04)   | 7.70          |                                             |
| 2424         | ASTM F2853                     | 26.11          | R(0.01)   | -7.70<br>1.70 |                                             |
| 2426<br>2429 | ASTM E1645<br>CPSC-CH-E1003-09 | 84<br>73.2     |           | 1.70<br>-0.05 |                                             |
| 2429         | In house                       | 75.2<br>75.81  |           | -0.05<br>0.37 |                                             |
| 2449         | ASTM E1645                     | 68.73          |           | -0.78         |                                             |
| 2453         |                                |                |           | -0.70         |                                             |
| 2459         | EN 16711-1                     | 69             |           | -0.73         |                                             |
| 2460         |                                |                |           |               |                                             |
| 2480         | In house                       | 83             |           | 1.54          |                                             |
| 2492         | CPSC-CH-E1003-09               | 70.3126        |           | -0.52         |                                             |
| 2503         | ASTM F963                      | 78.4           |           | 0.79          |                                             |
| 2504         | EPA3052                        | 18.096         | C,R(0.01) | -9.00         | first reported 53.610                       |
| 2511         | CPSC-CH-E1003-09               | 76.832         |           | 0.54          |                                             |
| 2529         | CPSC-CH-E1003-09               | 74.48          |           | 0.16          |                                             |
| 2567         | CPSC-CH-E1003-09               | 70.9           |           | -0.42         |                                             |
| 2572<br>2573 |                                |                |           |               |                                             |
| 2573<br>2582 | CPSC-CH-E1003-09               | 84.06          |           | <br>1.71      |                                             |
| 2590         | CPSC-CH-E1003-09               | 61.55          |           | -1.94         |                                             |
| 2622         | 51 55 511-L 1005-03            |                |           | -1.94         |                                             |
| 2678         | CPSC-CH-E1003-09.1             | 77.5           |           | 0.65          |                                             |
| 2734         |                                |                |           |               |                                             |
| 2741         | CPSC-CH-E1003-09               | 67.5           |           | -0.98         |                                             |
| 2799         | In house                       | 75.6           |           | 0.34          |                                             |
|              |                                |                |           |               |                                             |

| lab          | method               | value         | mark     | z(targ)        | remarks |
|--------------|----------------------|---------------|----------|----------------|---------|
| 2834         | ISO11885             | 78            |          | 0.73           |         |
| 2835         | IEC62321             | 76.10         |          | 0.42           |         |
| 2864         | CPSC-CH-E1003-09     | 62.63         |          | -1.77          |         |
| 2912         | CPSC-CH-E1003-09     | 82.202        |          | 1.41           |         |
| 2976         | ASTM F963            | 53.2          | R(0.05)  | -3.30          |         |
| 2977         |                      | 62.9          |          | -1.72          |         |
| 3015         | ASTM F963            | 72            |          | -0.24          |         |
| 3100         | EN16711-1            | 78.53         |          | 0.82           |         |
| 3110         | ASTM F963            | 72            |          | -0.24          |         |
| 3116         |                      |               |          |                |         |
| 3118         | CPSC-CH-E1003-09     | 85.1063       |          | 1.88           |         |
| 3172         | ISO8124-5            | 71.48         |          | -0.33          |         |
| 3182         | CPSC-CH-E1003-09     | 71.7          |          | -0.29          |         |
| 3185         | CPSC-CH-E1003-09     | 76.77         |          | 0.53           |         |
| 3199         | EPA3051              | 74.16         |          | 0.11           |         |
| 3214<br>3218 | EPA3052<br>EN16711-1 | 62.61<br>72.2 |          | -1.77<br>-0.21 |         |
|              | EN 107 I I - I       | 12.2          |          | -0.21          |         |
| 3225<br>3228 | CPSC-CH-E1003-09     | 73.17         |          | -0.05          |         |
| 8005         | CF3C-CH-E1003-09     | 71.09         |          | -0.03          |         |
| 0003         |                      | 71.09         |          | -0.39          |         |
|              | normality            | suspect       |          |                |         |
|              | n                    | 72            |          |                |         |
|              | outliers             | 4             |          |                |         |
|              | mean (n)             | 73.509        |          |                |         |
|              | st.dev. (n)          | 5.4608        | RSD = 7% |                |         |
|              | R(calc.)             | 15.290        | ,,       |                |         |
|              | st.dev.(Horwitz)     | 6.1595        |          |                |         |
|              | R(Horwitz)           | 17.247        |          |                |         |
|              | ` '                  |               |          |                |         |





## Determination of Total Cobalt as Co on sample #23551; results in mg/kg

| lab          | method                               | value            | mark | z(targ) | remarks                                |
|--------------|--------------------------------------|------------------|------|---------|----------------------------------------|
| 210          | In house                             | 395.191          | mark | Z(tary) | United                                 |
| 339          | In house                             | 525              |      |         |                                        |
| 551          | CPSC-CH-E1003-09.1                   | 840.8            |      |         |                                        |
| 623          | In house                             | 281.81           |      |         |                                        |
| 840          | In house                             | 512.128          |      |         |                                        |
| 841          | ISO8124-5                            | 463              |      |         |                                        |
| 1051<br>1213 | EN16711-1/ISO11885                   | <br>487.19       |      |         |                                        |
| 2121         | EN 107 11-1/130 1 1003               | 407.19           |      |         |                                        |
| 2132         |                                      |                  |      |         |                                        |
| 2137         | IEC62321-5                           | 755.5            |      |         |                                        |
| 2138         | CPSC-CH-E1003-09                     | 341.0            |      |         |                                        |
| 2139         | CPSC-CH-E1003-09                     | 543              |      |         |                                        |
| 2156         | EPA3052                              | 310.20           |      |         |                                        |
| 2165         | CDSC CI L E1003 00                   | 240.96           |      |         |                                        |
| 2170<br>2182 | CPSC-CH-E1003-09                     | 249.86           |      | <b></b> |                                        |
| 2184         |                                      |                  |      |         |                                        |
| 2216         |                                      |                  |      |         |                                        |
| 2256         |                                      |                  |      |         |                                        |
| 2258         | 16CFR1303                            | not detected     |      |         | Possibly a false negative test result? |
| 2287         |                                      |                  |      |         |                                        |
| 2290         | CPSC-CH-E1003-09                     | 397.4            |      |         |                                        |
| 2294         | In house                             | <br>EOE 2246     |      |         |                                        |
| 2296<br>2301 | In house                             | 585.2346         |      | <b></b> |                                        |
| 2310         | EN16711-1                            | 328              |      |         |                                        |
| 2311         | CPSC-CH-E1003-09                     | 291.62           |      |         |                                        |
| 2314         | ISO8124-5                            | 333              |      |         |                                        |
| 2326         | CPSC-CH-E1003-09                     | 482.59           |      |         |                                        |
| 2330         | CPSC-CH-E1003-09.1                   | not determined   |      |         |                                        |
| 2347         | 0000 011 54000 00                    |                  |      |         |                                        |
| 2350         | CPSC-CH-E1003-09                     | 337.6            |      |         |                                        |
| 2355<br>2357 | CPSC-CH-E1003-09                     | not analyzed     |      | <b></b> |                                        |
| 2358         | CPSC-CH-E1003-09                     | na               |      |         |                                        |
| 2365         | 0. 00 0 2.000 00                     |                  |      |         |                                        |
| 2366         | ASTM F963                            | out cap          |      |         |                                        |
| 2369         | EPA3052                              | not analyzed     |      |         |                                        |
| 2370         | EPA3052                              | 510              |      |         |                                        |
| 2373         | CPSC-CH-E1003-09                     | not applicable   |      |         |                                        |
| 2375<br>2380 | EN16711-1                            | 320<br>471.70    |      |         |                                        |
| 2381         | CPSC-CH-E1003-09<br>CPSC-CH-E1003-09 | 466.70           |      |         |                                        |
| 2382         | IEC62321-4/5                         | no capability    |      |         |                                        |
| 2384         | EPA3051                              | 330.68           |      |         |                                        |
| 2385         | EPA3052                              | 609              |      |         |                                        |
| 2392         | IEC62321-5                           | 246.46           |      |         |                                        |
| 2406         |                                      |                  |      |         |                                        |
| 2410         | ACTM FOOCO                           | 220.46           | 0    |         | first reported 74.00                   |
| 2424<br>2426 | ASTM F2853<br>ASTM E1645             | 330.16<br>509.6  | С    |         | first reported 71.02                   |
| 2420         | CPSC-CH-E1003-09                     | 535.6            |      |         |                                        |
| 2431         | In house                             | 286.35           |      |         |                                        |
| 2449         | ASTM E1645                           | 398.28           |      |         |                                        |
| 2453         |                                      |                  |      |         |                                        |
| 2459         | EN 16711-1                           | 395              |      |         |                                        |
| 2460         |                                      |                  |      |         |                                        |
| 2480         |                                      |                  |      |         |                                        |
| 2492<br>2503 |                                      |                  |      |         |                                        |
| 2503<br>2504 | EPA3052                              | 582.505          |      |         |                                        |
| 2511         | CPSC-CH-E1003-09                     | 655.406          |      |         |                                        |
| 2529         |                                      |                  |      |         |                                        |
| 2567         | CPSC-CH-E1003-09                     | 343.5            |      |         |                                        |
| 2572         |                                      |                  |      |         |                                        |
| 2573         | ODOO OU E4000 00                     | 204.50           |      |         |                                        |
| 2582         | CPSC-CH-E1003-09                     | 301.52<br>530.33 |      |         |                                        |
| 2590<br>2622 | CPSC-CH-E1003-09                     | 530.32           |      |         |                                        |
| 2678         |                                      |                  |      |         |                                        |
| 2734         | EN16711-1                            | 230.82           |      |         |                                        |
| 2741         | CPSC-CH-E1003-09                     | 338.1            |      |         |                                        |
| 2799         | In house                             | 265.8            |      |         |                                        |
|              |                                      |                  |      |         |                                        |

| lab  | method                       | value               | mark      | z(targ) | remarks |
|------|------------------------------|---------------------|-----------|---------|---------|
| 2834 | ISO11885                     | 668                 |           |         |         |
| 2835 | IEC62321                     | 304.83              |           |         |         |
| 2864 |                              |                     |           |         |         |
| 2912 | CPSC-CH-E1003-09             | 309.883             |           |         |         |
| 2976 |                              |                     |           |         |         |
| 2977 |                              | 524.0               |           |         |         |
| 3015 | ASTM F963                    | 534                 |           |         |         |
| 3100 | EN16711-1                    | 568.06              |           |         |         |
| 3110 |                              |                     |           |         |         |
| 3116 |                              |                     |           |         |         |
| 3118 | CPSC-CH-E1003-09             | 207.3836            |           |         |         |
| 3172 | ISO8124-5                    | 651.73              |           |         |         |
| 3182 | CPSC-CH-E1003-09             | not analyzed        |           |         |         |
| 3185 | CPSC-CH-E1003-09             | 522.6               |           |         |         |
| 3199 | EPA3051                      | Not tested          |           |         |         |
| 3214 | EPA3052                      | 630.59              |           |         |         |
| 3218 | EN16711-1                    | 523.4               |           |         |         |
| 3225 |                              |                     |           |         |         |
| 3228 |                              |                     |           |         |         |
| 8005 |                              |                     |           |         |         |
|      |                              | 01/                 |           |         |         |
|      | normality                    | OK                  |           |         |         |
|      | n<br>                        | 51                  |           |         |         |
|      | outliers                     | 0<br>442.394        |           |         |         |
|      | mean (n)                     | 442.394<br>145.9795 | RSD = 33% |         |         |
|      | st.dev. (n)                  | 408.743             | KOD - 33% |         |         |
|      | R(calc.)<br>st.dev.(Horwitz) | (28.2941)           |           |         |         |
|      |                              |                     |           |         |         |
|      | R(Horwitz)                   | (79.223)            |           |         |         |





## Determination of Total Mercury as Hg on sample #23551; results in mg/kg

| lab          | method                        | value                | mark       | z(targ)      | remarks                                 |
|--------------|-------------------------------|----------------------|------------|--------------|-----------------------------------------|
| 210          | In house                      | 68.487               | R(0.05)    | -3.85        | Tomarko                                 |
| 339          | In house                      | 91                   | (/         | -1.01        |                                         |
| 551          | CPSC-CH-E1003-09.1            | 105.11               |            | 0.76         |                                         |
| 623          | In house                      | 93.66                |            | -0.68        |                                         |
| 840          | In house                      | 94.383214            |            | -0.59        |                                         |
| 841          | ISO8124-5                     | 92                   |            | -0.89        |                                         |
| 1051         | EN40744 4/1004400F            |                      |            |              |                                         |
| 1213         | EN16711-1/ISO11885            | 96.32                |            | -0.34        |                                         |
| 2121<br>2132 | CPSC-CH-E1003-09              | 94.29                |            | -0.60        |                                         |
| 2132         | CF3C-CH-E 1003-09             | 94.29                |            | -0.00        |                                         |
| 2138         | CPSC-CH-E1003-09              | 110.8                |            | 1.48         |                                         |
| 2139         | CPSC-CH-E1003-09              | 117                  |            | 2.26         |                                         |
| 2156         | EPA3052                       | 100.40               |            | 0.17         |                                         |
| 2165         | ASTM F963                     | 102.8                |            | 0.47         |                                         |
| 2170         |                               |                      |            |              |                                         |
| 2182         |                               |                      |            |              |                                         |
| 2184         | CPSC-CH-E1003-09              | 96.8                 |            | -0.28        |                                         |
| 2216         | ASTM F963                     | 103                  |            | 0.50         |                                         |
| 2256<br>2258 | 16CEB1202                     | not detected         |            |              | Possibly a false possitive test result? |
| 2287         | 16CFR1303<br>EPA3052          | 101.0                |            | 0.25         | Possibly a false negative test result?  |
| 2290         | CPSC-CH-E1003-09              | 98.7                 |            | -0.04        |                                         |
| 2294         | 01 00 011 21000 00            |                      |            |              |                                         |
| 2296         | In house                      | 101.7337             |            | 0.34         |                                         |
| 2301         |                               |                      |            |              |                                         |
| 2310         | EN16711-1                     | 93                   |            | -0.76        |                                         |
| 2311         | CPSC-CH-E1003-09              | 90.93                |            | -1.02        |                                         |
| 2314         | ISO8124-5                     | 90.1                 |            | -1.13        |                                         |
| 2326         | CPSC-CH-E1003-09              | ND                   |            |              |                                         |
| 2330<br>2347 | CPSC-CH-E1003-09.1            | not determined       |            |              |                                         |
| 2350         | CPSC-CH-E1003-09              | 104.5                |            | 0.69         |                                         |
| 2355         | EPA3052                       | 100                  |            | 0.12         |                                         |
| 2357         | CPSC-CH-E1003-09              | 99.2                 |            | 0.02         |                                         |
| 2358         | CPSC-CH-E1003-09              | 96.31                |            | -0.34        |                                         |
| 2365         | CPSC-CH-E1002-08              | 100.6                |            | 0.20         |                                         |
| 2366         | ASTM F963                     | 99                   |            | -0.01        |                                         |
| 2369         | EPA3052                       | 99.73                |            | 0.09         |                                         |
| 2370         | EPA3052                       | 98.4                 |            | -0.08        |                                         |
| 2373<br>2375 | CPSC-CH-E1003-09<br>EN16711-1 | not applicable<br>95 |            | <br>-0.51    |                                         |
| 2380         | CPSC-CH-E1003-09              | 90.12                |            | -1.12        |                                         |
| 2381         | CPSC-CH-E1003-09              | 92.60                |            | -0.81        |                                         |
| 2382         | IEC62321-4/5                  | 98                   |            | -0.13        |                                         |
| 2384         | EPA3051                       | 68.67                | R(0.05)    | -3.83        |                                         |
| 2385         | EPA3052                       | 100                  |            | 0.12         |                                         |
| 2392         | IEC62321-5                    | 62.88                | R(0.05)    | -4.56        |                                         |
| 2406         | ASTM F963                     | 91.98                |            | -0.89        |                                         |
| 2410<br>2424 | ASTM F2853                    | <br>65772.17         | C,R(0.01)  | <br>8276.61  | first reported 22.25                    |
| 2424         | ASTM F2633<br>ASTM E1645      | 96.36                | J,11(0.01) | -0.34        | mot reported 22.20                      |
| 2429         | CPSC-CH-E1003-09              | 102.7                |            | 0.46         |                                         |
| 2431         | In house                      | 81.69                |            | -2.19        |                                         |
| 2449         | ASTM E1645                    | 98                   |            | -0.13        |                                         |
| 2453         | =11.40=44.4                   |                      |            |              |                                         |
| 2459         | EN 16711-1                    | 98.77                |            | -0.03        |                                         |
| 2460         |                               |                      |            |              |                                         |
| 2480<br>2492 |                               |                      |            |              |                                         |
| 2503         | ASTM F963                     | 86.7                 |            | -1.56        |                                         |
| 2504         | EPA3052                       | 3.925                | C,R(0.01)  | -11.99       | first reported 18.215                   |
| 2511         | CPSC-CH-E1003-09              | 92.898               | , (/       | -0.77        | •                                       |
| 2529         |                               |                      |            |              |                                         |
| 2567         | CPSC-CH-E1003-09              | 101.7                |            | 0.34         |                                         |
| 2572         |                               |                      |            |              |                                         |
| 2573         | CDCC CH E4000 00              | <br>100 05           |            | 1.27         |                                         |
| 2582<br>2590 | CPSC-CH-E1003-09              | 109.95<br>124.55     |            | 1.37<br>3.21 |                                         |
| 2622         | CPSC-CH-E1003-09              | 124.55<br>           |            | 3.21         |                                         |
| 2678         | CPSC-CH-E1003-09.1            | 114.45               |            | 1.94         |                                         |
| 2734         | 2. 22 2 21000 00.1            |                      |            |              |                                         |
| 2741         | CPSC-CH-E1003-09              | 101.7                |            | 0.34         |                                         |
| 2799         |                               |                      |            |              |                                         |

| lab  | method            | value   | mark     | z(targ) | remarks                              |
|------|-------------------|---------|----------|---------|--------------------------------------|
| 2834 | ISO11885          | 112     |          | 1.63    |                                      |
| 2835 | IEC62321          | 101.65  |          | 0.33    |                                      |
| 2864 | CPSC-CH-E1003-09  | 100.03  |          | 0.12    |                                      |
| 2912 | CPSC-CH-E1003-09  | 103.599 |          | 0.57    |                                      |
| 2976 | ASTM F963         | 68.4    | R(0.05)  | -3.86   |                                      |
| 2977 |                   |         | W        |         | test result withdrawn, reported 71.2 |
| 3015 | ASTM F963         | 98      |          | -0.13   |                                      |
| 3100 | EN16711-1         | 101.73  |          | 0.34    |                                      |
| 3110 | ASTM F963         | 87      |          | -1.52   |                                      |
| 3116 |                   |         |          |         |                                      |
| 3118 |                   |         |          |         |                                      |
| 3172 | ISO8124-5         | 98.80   |          | -0.03   |                                      |
| 3182 | CPSC-CH-E1003-09  | 94.4    |          | -0.58   |                                      |
| 3185 | CPSC-CH-E1003-09  | 102.36  |          | 0.42    |                                      |
| 3199 | EPA3051           | 105.22  |          | 0.78    |                                      |
| 3214 | EPA3052           | 85.87   |          | -1.66   |                                      |
| 3218 | EN16711-1         | 100.4   |          | 0.17    |                                      |
| 3225 | 0000 011 54000 00 |         |          |         |                                      |
| 3228 | CPSC-CH-E1003-09  | 104.43  |          | 0.68    |                                      |
| 8005 |                   |         |          |         |                                      |
|      | normality         | suspect |          |         |                                      |
|      | n                 | 59      |          |         |                                      |
|      | outliers          | 6       |          |         |                                      |
|      | mean (n)          | 99.041  |          |         |                                      |
|      | st.dev. (n)       | 7.5572  | RSD = 8% |         |                                      |
|      | R(calc.)          | 21.160  |          |         |                                      |
|      | st.dev.(Horwitz)  | 7.9348  |          |         |                                      |
|      | R(Horwitz)        | 22.217  |          |         |                                      |





## Determination of Total Nickel as Ni on sample #23551; results in mg/kg

| lab          | method                               | value                   | mark      | z(targ)        | remarks                                |
|--------------|--------------------------------------|-------------------------|-----------|----------------|----------------------------------------|
| 210          | In house                             | 1546.547                |           | -0.33          |                                        |
| 339<br>551   | In house<br>CPSC-CH-E1003-09.1       | 1291<br>2042.5          |           | -3.40<br>5.63  |                                        |
| 623          | In house                             | 1607.98                 |           | 0.41           |                                        |
| 840          | In house                             | 1714.20336              |           | 1.68           |                                        |
| 841          | ISO8124-5                            | 1567                    |           | -0.09          |                                        |
| 1051         | 10001210                             |                         |           |                |                                        |
| 1213         | EN16711-1/ISO11885                   | 1637.71                 |           | 0.77           |                                        |
| 2121         |                                      |                         |           |                |                                        |
| 2132         |                                      |                         |           |                |                                        |
| 2137         | IEC62321-5                           | 1755                    |           | 2.18           |                                        |
| 2138         | CPSC-CH-E1003-09                     | 1561                    |           | -0.16          |                                        |
| 2139         | CPSC-CH-E1003-09                     | 1825                    |           | 3.02           |                                        |
| 2156         | EPA3052                              | 1618.50                 |           | 0.53           |                                        |
| 2165<br>2170 |                                      |                         |           |                |                                        |
| 2170         |                                      |                         |           |                |                                        |
| 2184         |                                      |                         |           |                |                                        |
| 2216         |                                      |                         |           |                |                                        |
| 2256         |                                      |                         |           |                |                                        |
| 2258         | 16CFR1303                            | not detected            |           |                | Possibly a false negative test result? |
| 2287         |                                      |                         |           |                | -                                      |
| 2290         | CPSC-CH-E1003-09                     | 1609.9                  |           | 0.43           |                                        |
| 2294         | la havea                             | 4547.7500               |           |                |                                        |
| 2296         | In house                             | 1517.7503               |           | -0.68          |                                        |
| 2301<br>2310 | EN16711-1                            | <br>1530                |           | -0.53          |                                        |
| 2310         | CPSC-CH-E1003-09                     | 1495.39                 |           | -0.53<br>-0.95 |                                        |
| 2314         | ISO8124-5                            | 1511                    |           | -0.76          |                                        |
| 2326         | CPSC-CH-E1003-09                     | 1519.61                 |           | -0.66          |                                        |
| 2330         | CPSC-CH-E1003-09.1                   | not determined          |           |                |                                        |
| 2347         |                                      |                         |           |                |                                        |
| 2350         | CPSC-CH-E1003-09                     | 1518                    |           | -0.67          |                                        |
| 2355         |                                      |                         |           |                |                                        |
| 2357         | CPSC-CH-E1003-09                     | not analyzed            |           |                |                                        |
| 2358         | CPSC-CH-E1003-09                     | na                      |           |                |                                        |
| 2365<br>2366 | ASTM E062                            | out con                 |           |                |                                        |
| 2369         | ASTM F963<br>EPA3052                 | out cap<br>not analyzed |           |                |                                        |
| 2370         | EPA3052                              | 1820                    |           | 2.96           |                                        |
| 2373         | CPSC-CH-E1003-09                     | not applicable          |           |                |                                        |
| 2375         | EN16711-1                            | 1600                    |           | 0.31           |                                        |
| 2380         | CPSC-CH-E1003-09                     | 1855.44                 |           | 3.38           |                                        |
| 2381         | CPSC-CH-E1003-09                     | 1820.20                 |           | 2.96           |                                        |
| 2382         | IEC62321-4/5                         | no capability           |           |                |                                        |
| 2384         | EPA3051                              | 1325.73                 |           | -2.99          |                                        |
| 2385         | EPA3052                              | 1620                    |           | 0.55           |                                        |
| 2392<br>2406 | IEC62321-5                           | 1390.67                 |           | -2.21          |                                        |
| 2406         |                                      |                         |           |                |                                        |
| 2424         | ASTM F2853                           | 1484.41                 | С         | -1.08          | first reported 440.37                  |
| 2426         | ASTM E1645                           | 1535.19                 |           | -0.47          | •                                      |
| 2429         | CPSC-CH-E1003-09                     | 1591                    |           | 0.20           |                                        |
| 2431         | In house                             | 1557.66                 |           | -0.20          |                                        |
| 2449         | ASTM E1645                           | 1508                    |           | -0.79          |                                        |
| 2453         | EN 16711 1                           | <br>1505                |           | 0.47           |                                        |
| 2459         | EN 16711-1                           | 1535                    |           | -0.47          |                                        |
| 2460<br>2480 | In house                             | <br>1760                |           | 2.24           |                                        |
| 2492         | III IIUuse                           |                         |           |                |                                        |
| 2503         |                                      |                         |           |                |                                        |
| 2504         | EPA3052                              | 513.460                 | C,R(0.01) | -12.75         | first reported 1013.373                |
| 2511         | CPSC-CH-E1003-09                     | 1609.966                | ` '       | 0.43           | •                                      |
| 2529         |                                      |                         |           |                |                                        |
| 2567         | CPSC-CH-E1003-09                     | 1419.0                  |           | -1.86          |                                        |
| 2572         |                                      |                         |           |                |                                        |
| 2573         | CDSC CH E4003 00                     | <br>1740 07             |           | 2 10           |                                        |
| 2582<br>2590 | CPSC-CH-E1003-09<br>CPSC-CH-E1003-09 | 1749.07<br>1339.79      |           | 2.10<br>-2.82  |                                        |
| 2622         | O1 00-011-E1003-09                   | 1339.79                 |           | -2.02          |                                        |
| 2678         |                                      |                         |           |                |                                        |
| 2734         | EN16711-1                            | 1460.20                 |           | -1.37          |                                        |
| 2741         | CPSC-CH-E1003-09                     | 1328.1                  |           | -2.96          |                                        |
| 2799         |                                      |                         |           |                |                                        |
|              |                                      |                         |           |                |                                        |

| lab  | method           | value        | mark      | z(targ) | remarks |
|------|------------------|--------------|-----------|---------|---------|
| 2834 | ISO11885         | 1596         |           | 0.26    |         |
| 2835 | IEC62321         | 1579.27      |           | 0.06    |         |
| 2864 | CPSC-CH-E1003-09 | 1482.62      |           | -1.10   |         |
| 2912 | CPSC-CH-E1003-09 | 1765.125     |           | 2.30    |         |
| 2976 |                  |              |           |         |         |
| 2977 |                  | 1262         |           | -3.75   |         |
| 3015 | ASTM F963        | 1560         |           | -0.17   |         |
| 3100 | EN16711-1        | 1643.80      |           | 0.84    |         |
| 3110 |                  |              |           |         |         |
| 3116 |                  |              |           |         |         |
| 3118 | CPSC-CH-E1003-09 | 1453.6659    |           | -1.45   |         |
| 3172 | ISO8124-5        | 1537.5       |           | -0.44   |         |
| 3182 | CPSC-CH-E1003-09 | not analyzed |           |         |         |
| 3185 | CPSC-CH-E1003-09 | 1534.60      |           | -0.47   |         |
| 3199 | EPA3051          | Not tested   |           |         |         |
| 3214 | EPA3052          | 1585.20      |           | 0.13    |         |
| 3218 | EN16711-1        | 1527.0       |           | -0.57   |         |
| 3225 |                  |              |           |         |         |
| 3228 |                  |              |           |         |         |
| 8005 |                  |              |           |         |         |
|      | normality        | ОК           |           |         |         |
|      | n                | 50           |           |         |         |
|      | outliers         | 1            |           |         |         |
|      | mean (n)         | 1574.086     |           |         |         |
|      | st.dev. (n)      | 152.9625     | RSD = 10% |         |         |
|      | R(calc.)         | 428.295      |           |         |         |
|      | st.dev.(Horwitz) | 83.1664      |           |         |         |
|      | R(Horwitz)       | 232.866      |           |         |         |
|      | ( )              |              |           |         |         |





## **APPENDIX 2** Other reported elements

sample #23550; results in mg/kg

| lab          | e #23550; results in mo       | As                            | Cd                            | Cr                            |
|--------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| 210          |                               |                               |                               |                               |
| 339<br>551   | not detected                  | not detected<br>2.180         | not detected                  | not detected<br>2.741         |
| 623          | Not Detected                  | Not Detected                  | Not Detected                  | Not Detected                  |
| 840          | not detected                  | not detected                  | not detected                  | not detected                  |
| 841<br>1051  | <10<br>                       | <10<br>                       | <10<br>                       | <10<br>                       |
| 1213         | not detected                  | not detected                  | not detected                  | not detected                  |
| 2121         |                               |                               |                               |                               |
| 2132         | <10                           | <10                           | <10                           | <10                           |
| 2137<br>2138 |                               |                               |                               |                               |
| 2139         |                               |                               |                               |                               |
| 2156         | <10                           | <3                            | <1                            | <5                            |
| 2165<br>2170 |                               |                               | not detected                  | not detected                  |
| 2182         |                               |                               |                               |                               |
| 2184         |                               |                               | not detected                  | not detected                  |
| 2216<br>2256 | Not Detected                  | Not Detected                  | Not Detected                  | Not Detected                  |
| 2258         | not detected                  | not detected                  | not detected                  | not detected                  |
| 2287         |                               | <5                            | <5                            | <5                            |
| 2290<br>2294 | <20                           | <20<br>                       | <20<br>                       | <20<br>                       |
| 2294<br>2296 | <br>5.2981                    | 0.1271                        | 0.7330                        | 4.3642                        |
| 2301         |                               |                               |                               |                               |
| 2310         | not detected                  | not detected                  | not detected                  | not detected                  |
| 2311<br>2314 | Not Detected                  | Not Detected                  | Not Detected                  | Not Detected                  |
| 2326         | ND                            | ND                            | ND                            | ND                            |
| 2330         | not determined                | not determined                | not determined                | not determined                |
| 2347<br>2350 | <br>< 10                      | <br>< 10                      | <br>< 5                       | <br>< 5                       |
| 2355         |                               |                               | <2                            |                               |
| 2357         | not analyzed                  | not analyzed                  | <5                            | <10                           |
| 2358         | na<br><10                     | na<br><10                     | nd<br><10                     | na<br><5                      |
| 2365<br>2366 | <20                           | <20                           | <5                            | <5                            |
| 2369         | not analyzed                  | not analyzed                  | <2                            | not analyzed                  |
| 2370         |                               |                               |                               |                               |
| 2373<br>2375 | not applicable<br><10         | not applicable<br><10         | not detected<br><10           | not applicable<br><10         |
| 2380         |                               |                               |                               |                               |
| 2381         |                               |                               |                               |                               |
| 2382<br>2384 | no capability<br>Not Detected | no capability<br>Not Detected | no capability<br>Not Detected | no capability<br>Not Detected |
|              | <10                           | <10                           | <1                            | 2.02                          |
| 2392         | Not detected                  | Not detected                  | Not detected                  | Not detected                  |
| 2406<br>2410 | <20<br>                       | <20<br>                       | <20<br>                       | <20<br>                       |
| 2410         | 0.53 C                        | 1.91 C                        | 1.66 C                        | 2.25 C                        |
| 2426         |                               |                               | n.d.                          | n.d.                          |
| 2429<br>2431 | <10                           | <10<br>                       | <10<br>                       | <10<br>                       |
| 2449         |                               |                               |                               |                               |
| 2453         |                               |                               |                               |                               |
| 2459<br>2460 |                               | ND<br>                        | ND<br>                        | ND<br>                        |
| 2480         |                               |                               |                               |                               |
| 2492         |                               |                               |                               |                               |
| 2503         | <br>-5                        | 3.3                           | <br><2                        | 1.9                           |
| 2504<br>2511 | <5<br>                        | <5<br>                        | <2<br>                        | <2<br>                        |
| 2529         |                               |                               |                               |                               |
| 2567         | <20                           | <20                           | <20                           | <20                           |
| 2572<br>2573 |                               |                               |                               |                               |
| 2582         | <5                            | <5                            | <5                            | <5                            |
| 2590         | < L.O.Q.                      | < L.O.Q.                      | < L.O.Q.                      | < L.O.Q.                      |
| 2622<br>2678 |                               | Not detected                  | Not detected                  |                               |
| 2734         |                               |                               |                               |                               |
| 2741         | <50                           | <2.5                          | <5                            | <5                            |
| 2799         |                               | not detected                  | not detected                  | not detected                  |

| lab  | Sb             | As             | Cd             | Cr            |
|------|----------------|----------------|----------------|---------------|
| 2834 | not detected   | not detected   | not detected   | 1.8           |
| 2835 | not detected   | not detected   | 0.10           | 1.53          |
| 2864 | not determined | not determined | not determined |               |
| 2912 | < 1            | < 1            | < 1            | 2.511         |
| 2976 |                |                |                |               |
| 2977 | not detected   | not detected   | not detected   | not detected  |
| 3015 | <10            | <10            | <10            | <10           |
| 3100 | <10            | <5             | <5             | <20           |
| 3110 |                |                |                |               |
| 3116 | <10            | <7             | <10            | <7            |
| 3118 | <5             | <2,5           | <5             | <5            |
| 3172 | < 10           | < 10           | < 5            | < 10          |
| 3182 | not analyzed   | not analyzed   | <5             | not analyzed  |
| 3185 | <10            | <10            | <10            | <10           |
| 3199 | None detected  | None detected  | None detected  | None detected |
| 3214 | <20            | <20            | <20            | <20           |
| 3218 | <10            | <10            | <10            | <10           |
| 3225 |                |                |                |               |
| 3228 |                |                |                |               |
| 8005 |                |                |                |               |

lab 2424 first reported Sb 0; As 0.032; Cd 0.006; Cr0.036

sample #23550: results in mg/kg - continued

| sample       | e #23550; results in mg/ | /kg - continued       |                              |                       |
|--------------|--------------------------|-----------------------|------------------------------|-----------------------|
| lab          | Hg                       | Ni                    | Se                           | Zn                    |
| 210          |                          |                       |                              |                       |
| 339          | not detected             | not detected          | not detected                 | 10                    |
| 551<br>623   | Not Detected             | 1.631<br>Not Detected | 0.246<br>Not Detected        | 15.34<br>Not Detected |
| 840          | not detected             | not detected          | not detected                 | not detected          |
| 841          | <10                      | <10                   | <10                          | <10                   |
| 1051         |                          |                       |                              |                       |
| 1213         | not detected             | not detected          | not detected                 | not detected          |
| 2121         |                          |                       |                              |                       |
| 2132         | <10                      |                       |                              |                       |
| 2137         |                          |                       |                              |                       |
| 2138<br>2139 |                          |                       |                              |                       |
| 2156         | <5                       | <5                    | <10                          | <10                   |
| 2165         | not detected             |                       |                              |                       |
| 2170         |                          |                       |                              |                       |
| 2182         |                          |                       |                              |                       |
| 2184         | not detected             |                       |                              |                       |
| 2216         | Not Detected             |                       | Not Detected                 |                       |
| 2256<br>2258 | not detected             | not detected          | not detected                 | not detected          |
| 2287         | <5                       |                       |                              |                       |
| 2290         | <20                      | <20                   | <20                          | <20                   |
| 2294         |                          |                       |                              |                       |
| 2296         | 17.6820                  | 4.8768                | 9.2504                       | 9.0781                |
| 2301         | not detected             |                       |                              | not detected          |
| 2310<br>2311 | not detected             | not detected          | not detected<br>Not Detected | not detected          |
| 2311         | Not Detected             | Not Detected          | Not Detected                 | Not Detected          |
| 2326         | ND                       | ND                    | ND                           | ND                    |
| 2330         | not determined           | not determined        | not determined               | not determined        |
| 2347         |                          |                       |                              |                       |
| 2350         | < 2                      | < 5                   | < 10                         | < 5                   |
| 2355         | <2                       |                       |                              |                       |
| 2357<br>2358 | <5<br>nd                 | not analyzed<br>na    | not analyzed<br>na           | not analyzed<br>na    |
| 2365         | <5                       |                       | <10                          |                       |
| 2366         | <5                       | out cap               | <20                          | out cap               |
| 2369         | <2                       | not analyzed          | not analyzed                 | not analyzed          |
| 2370         |                          |                       |                              |                       |
| 2373         | not applicable           | not applicable        | not applicable               | not applicable        |
| 2375<br>2380 | <10                      | <10                   | <10                          | <10<br>               |
| 2381         |                          |                       |                              |                       |
| 2382         | no capability            | no capability         | no capability                | no capability         |
| 2384         | Not Detected             | Not Detected          | Not Detected                 | 3.10                  |
| 2385         | <0.5                     | <5                    | <5                           | <10                   |
| 2392         | Not detected             | Not detected          | Not detected                 | Not detected          |
| 2406<br>2410 | <20<br>                  |                       | <20<br>                      |                       |
| 2424         | 194.96 C                 | 1.95 C                | 2.27 C                       | 7.85 C                |
| 2426         | n.d.                     | n.d.                  |                              |                       |
| 2429         | <10                      | <10                   | <10                          | <10                   |
| 2431         |                          |                       |                              |                       |
| 2449         |                          |                       |                              |                       |
| 2453<br>2459 | ND                       | ND                    | ND                           |                       |
| 2460         |                          |                       |                              |                       |
| 2480         |                          |                       |                              |                       |
| 2492         |                          |                       |                              |                       |
| 2503         | 2.4                      |                       |                              |                       |
| 2504         | <2                       | <5                    | <5                           | <5                    |
| 2511<br>2529 |                          |                       |                              |                       |
| 2529         | <20                      | <20                   | <20                          | <20                   |
| 2572         |                          |                       |                              |                       |
| 2573         |                          |                       |                              |                       |
| 2582         | <5                       | <5                    | not detected                 | not analyzed          |
| 2590         |                          |                       |                              |                       |
| 2622<br>2678 | Not detected             |                       | <b></b>                      |                       |
| 2678<br>2734 | Not detected             |                       |                              | 30.30                 |
| 2741         | <10                      | <10                   | <50                          | <50                   |
| 2799         |                          |                       | not detected                 | 9.11 C                |
| 2834         | not detected             | 1.0                   | not detected                 | 7                     |
| 2835         | not detected             | 0.86                  | not detected                 | 6.33                  |
|              |                          |                       |                              |                       |

| lab  | Hg             | Ni             | Se             | Zn           |
|------|----------------|----------------|----------------|--------------|
| 2864 | not determined | not determined | not determined |              |
| 2912 | 0.091          | 1.039          | < 1            | 10.354       |
| 2976 |                |                |                |              |
| 2977 | not detected   | not detected   | not detected   | not detected |
| 3015 | <10            | <10            | <10            | <10          |
| 3100 | <10            | <10            | <10            | <20          |
| 3110 |                |                |                |              |
| 3116 | <5             |                | <10            |              |
| 3118 | <5             | <5             | <5             | <5           |
| 3172 | < 10           | < 10           |                |              |
| 3182 | <13            | not analyzed   | not analyzed   | not analyzed |
| 3185 | <10            | <10            | <10            | <20          |
| 3199 | None detected  | Not tested     | None detected  | Not tested   |
| 3214 | <20            | <20            | <20            | <20          |
| 3218 | <10            | <10            |                |              |
| 3225 |                |                |                |              |
| 3228 |                |                |                |              |
| 8005 | <2.5           |                |                |              |

lab 2424 first reported Hg 2.72; Ni 0.06; Se 0.003; Zn 0.15 lab 2799 first reported 39.38  $\,$ 

sample #23551; results in mg/kg

| <u>oumpre</u> | e #23551; results | iii iiig/kg    |                |                |                                      |
|---------------|-------------------|----------------|----------------|----------------|--------------------------------------|
| lab           | Sb                | As             | Cr             | Cu             | Pb                                   |
| 210           |                   |                | 5.847          | 3.565          |                                      |
| 339           | not detected      | not detected   | 18 C           | not detected   | not detected                         |
| 551           | 0.717             | 2.931          | 8.375          | 23.883         | 2.057                                |
| 623           | Not detected      | Not detected   | Not detected   | Not detected   | Not detected                         |
| 840           | not detected      | not detected   | not detected   | not detected   | not detected                         |
| 841           | <10               | <10            | <10            | <10            | <10                                  |
| 1051          |                   |                |                |                | <10                                  |
| 1213          | not detected      | not detected   | not detected   | not detected   | not detected                         |
| 2121          |                   |                |                |                | <lq< td=""></lq<>                    |
| 2132          | <10               | <10            | <10            |                |                                      |
| 2137          |                   |                |                |                |                                      |
| 2138          |                   |                |                |                |                                      |
| 2139          |                   |                |                |                |                                      |
| 2156          | <10               | <3             | 5.08           | <5             | <10                                  |
| 2165          |                   |                | not detected   |                | not detected                         |
| 2170          |                   |                |                |                |                                      |
| 2182          |                   |                |                |                |                                      |
| 2184          |                   |                | not detected   |                | not detected                         |
| 2216          | Not Detected      | Not Detected   | Not Detected   |                | Not Detected                         |
| 2256          |                   |                |                |                | ND                                   |
| 2258          | not detected      | not detected   | not detected   | not detected   | not detected                         |
| 2287          |                   | <5             | 5.193          |                | <5                                   |
| 2290          | <20               | <20            | <20            | <20            | <20                                  |
| 2294          |                   |                |                |                | Not detected                         |
| 2296          | 1.8696            | 2.1378 C       | 7.6430         | 4.7179         | 2.8619                               |
| 2301          |                   |                | <del></del>    | <del></del>    |                                      |
| 2310          | not detected      | not detected   | not detected   | not detected   | not detected                         |
| 2311          | Not Detected      | Not Detected   | <5             | Not Detected   | Not Detected                         |
| 2314          |                   |                |                |                |                                      |
| 2326          | ND                | ND             | ND             | ND             | ND                                   |
| 2330          | not determined    | not determined | not determined | not determined | not detected                         |
| 2347          |                   |                |                |                | <20                                  |
| 2350          | < 10              | < 10           | < 5            | < 5            | < 20                                 |
| 2355          |                   |                |                |                | <20                                  |
| 2357          | not analyzed      | not analyzed   | <10            | not analyzed   | <10                                  |
| 2358          | na                | na             | na             | na             | nd                                   |
| 2365          | <10               | <10            | 6.7            |                | <5                                   |
| 2366          | <20               | <20            | 10             | out cap        | <10                                  |
| 2369          | not analyzed      | not analyzed   | not analyzed   | not analyzed   | <2                                   |
| 2370          | <2                | <2             | 6.27           | <5             | <2                                   |
| 2373          | not applicable    | not applicable | not applicable | not applicable | not detected                         |
| 2375          | <10               | <10            | <10            | <10            | <10                                  |
| 2380          |                   |                |                |                |                                      |
| 2381          |                   |                |                |                |                                      |
| 2382          | no capability     | no capability  | no capability  | no capability  | not detected                         |
| 2384          | Not Detected      | Not Detected   | 4.22           | 3.16           | Not Detected                         |
| 2385          | <10               | <5             | 5.0            | <5             | <5                                   |
| 2392          | Not detected      | Not detected   | Not detected   | Not detected   | Not detected                         |
| 2406          | <20               | <20            | <20            |                | <20                                  |
| 2410          |                   |                |                |                |                                      |
| 2424          | 0.12              | 0.42           | 5.08 C         | 5.09 C         | 3.09                                 |
| 2426          |                   |                | n.d.           | n.d.           | n.d.                                 |
| 2429          | <10               | <10            | <10            | <10            | <10                                  |
| 2431          |                   |                | 6.20           |                |                                      |
| 2449          |                   |                |                |                |                                      |
| 2453          | ND.               | ND.            | ND.            | ND             | <lq 24mg="" [="" kg]<="" td=""></lq> |
| 2459          | ND                | ND             | ND             | ND             | ND                                   |
| 2460          |                   |                |                |                |                                      |
| 2480          |                   |                |                |                | <25                                  |
| 2492          |                   |                |                |                |                                      |
| 2503          | <br>252 505       | 2.3            | 6.2            | <br>4F         |                                      |
| 2504          | 352.585           | <5             | <2             | <5             | <2                                   |
| 2511          |                   |                |                |                |                                      |
| 2529          |                   |                |                |                |                                      |
| 2567          | <20               | <20            | <20            | <20            | <20                                  |
| 2572          |                   |                |                |                |                                      |
| 2573          | <br>-E            | <br>-5         | <br>-5         | not analyzed   | <br>-E                               |
| 2582          | <5                | <5             | <5             | not analyzed   | <5                                   |
| 2590          | < L.O.Q.          | < L.O.Q.       |                |                | < L.O.Q.                             |
| 2622          |                   | Not detected   |                |                | <10                                  |
| 2678          |                   | Not detected   |                |                | Not detected                         |
| 2734          | <br><50           | <br><2.5       | <br>-5         | <br><100       | 14.73                                |
| 2741          | <50               | <2.5           | <5             | <100           | <10                                  |
| 2799          | not dotacted      | not detected   | 3.84 C         | not detected   | not detected                         |
| 2834<br>2835  | not detected      | 1.3            | 5.6<br>5.13    | 4.7<br>3.90    | not detected                         |
| 2000          | not detected      | not detected   | J. 1J          | 3.90           | not detected                         |

| lab  | Sb             | As             | Cr            | Cu           | Pb             |
|------|----------------|----------------|---------------|--------------|----------------|
| 2864 | not determined | not determined |               |              | not determined |
| 2912 | < 1            | < 1            | 6.415         | 9.169        | 1.337          |
| 2976 |                |                |               |              |                |
| 2977 | not detected   | not detected   | not detected  | not detected | not detected   |
| 3015 | <10            | <10            | <10           | <10          | <10            |
| 3100 | <10            | <5             | <20           | <10          | <10            |
| 3110 |                |                |               |              |                |
| 3116 |                |                |               |              | <10            |
| 3118 | <5             | <2,5           | <5            | <5           | <5             |
| 3172 | < 10           | < 10           | < 10          |              | < 5            |
| 3182 | not analyzed   | not analyzed   | not analyzed  | not analyzed | <13            |
| 3185 | <10            | <10            | <10           | <10          | <10            |
| 3199 | None detected  | None detected  | None detected | Not tested   | None detected  |
| 3214 | <20            | <20            | <20           | <30          | <20            |
| 3218 | <10            | <10            | <10           | <10          | <10            |
| 3225 |                |                |               |              | <15            |
| 3228 |                |                |               |              |                |
| 8005 |                |                |               |              |                |

lab 339 first reported Cr 14 lab 2296 first reported As 67.9950 lab 2424 first reported Sb 0.019; As 0.022; Cr 0.051; Cu 0; Pb 0.09 lab 2799 first reported Cr 18.49

sample #23551: results in mg/kg - continued

| sample       | e #23551; results in mg | /kg - continued       |                           |                               |
|--------------|-------------------------|-----------------------|---------------------------|-------------------------------|
| lab          | Mn                      | Se                    | Sr                        | Zn                            |
| 210          |                         |                       |                           |                               |
| 339          | not detected            | not detected          | not detected              | 15                            |
| 551<br>623   | 6.733<br>Not detected   | 0.734<br>Not detected | 7.361                     | 58.97<br>Not detected         |
| 623<br>840   | not detected            | not detected          | Not detected not detected | not detected                  |
| 841          | <10                     | <10                   | <10                       | <10                           |
| 1051         |                         |                       |                           |                               |
| 1213         | not detected            | not detected          | not detected              | not detected                  |
| 2121         |                         |                       |                           |                               |
| 2132         |                         |                       |                           |                               |
| 2137         |                         |                       |                           |                               |
| 2138<br>2139 |                         | <del></del>           |                           |                               |
| 2156         | <5                      | <10                   | 4.37                      | <10                           |
| 2165         |                         |                       |                           |                               |
| 2170         |                         |                       |                           |                               |
| 2182         |                         |                       |                           |                               |
| 2184         |                         | Not Detected          |                           |                               |
| 2216<br>2256 |                         | Not Detected          |                           |                               |
| 2258         | not detected            | not detected          | not detected              | not detected                  |
| 2287         |                         |                       |                           |                               |
| 2290         | <20                     | <20                   | <20                       | <20                           |
| 2294         |                         |                       |                           |                               |
| 2296         | 3.5410                  | 1.1861                | 3.2324                    | 6.7539                        |
| 2301<br>2310 | not detected            | not detected          | not detected              | 9.2                           |
| 2310         | <5                      | Not Detected          | <5                        | Not Detected                  |
| 2314         |                         |                       |                           | 8.6                           |
| 2326         | ND                      | ND                    | ND                        | ND                            |
| 2330         | not determined          | not determined        | not determined            | not determined                |
| 2347         |                         | . 40                  |                           |                               |
| 2350<br>2355 | < 5<br>                 | < 10<br>              |                           | < 5<br>                       |
| 2357         | not analyzed            | not analyzed          | not analyzed              | not analyzed                  |
| 2358         | na                      | na                    | na                        | na                            |
| 2365         |                         | <10                   |                           |                               |
| 2366         | out cap                 | <20                   | out cap                   | out cap                       |
| 2369<br>2370 | not analyzed            | not analyzed<br><2    | not analyzed              | not analyzed                  |
| 2373         | not applicable          | not applicable        | not applicable            | not applicable                |
| 2375         | <10                     | <10                   | <10                       | <10                           |
| 2380         |                         |                       |                           |                               |
| 2381         |                         |                       |                           |                               |
| 2382<br>2384 | no capability<br>2.73   | no capability         | no capability<br>3.25     | no capability<br>Not Detected |
| 2385         | <.<br><5                | Not Detected <5       | <10                       | <10                           |
| 2392         | Not detected            | Not detected          | Not analyzed              | 14.99                         |
| 2406         |                         | <20                   |                           |                               |
| 2410         |                         |                       |                           |                               |
| 2424         | 4.34                    | 0.81 C                | 13.53 C                   | 12.92 C                       |
| 2426<br>2429 | n.d.<br><10             | <10                   | <10                       | <br><10                       |
| 2429         |                         |                       |                           |                               |
| 2449         |                         |                       |                           |                               |
| 2453         |                         |                       |                           |                               |
| 2459         | ND                      | ND                    | ND                        |                               |
| 2460<br>2480 |                         |                       |                           |                               |
| 2492         |                         | <b>-</b>              |                           |                               |
| 2503         |                         |                       |                           |                               |
| 2504         | <5                      | <5                    | <5                        | <5                            |
| 2511         |                         |                       |                           |                               |
| 2529         |                         |                       |                           |                               |
| 2567<br>2572 | <20                     | <20<br>               | <20<br>                   | <20<br>                       |
| 2572<br>2573 |                         |                       |                           |                               |
| 2582         | <5                      | <5                    | <5                        | not analyzed                  |
| 2590         | 3.23                    | < L.O.Q.              |                           | < L.O.Q.                      |
| 2622         |                         |                       |                           |                               |
| 2678         |                         |                       |                           |                               |
| 2734<br>2741 | <50                     | <50                   | <50                       | <50                           |
| 2799         | 6.63                    | not detected          | 3.37                      |                               |
| 2834         | 4.2                     | not detected          | not detected              | 3                             |
| 2835         | 3.48                    | not detected          | 4.04                      | 4.59                          |
|              |                         |                       |                           |                               |

| lab  | Mn           | Se             | Sr           | Zn           |
|------|--------------|----------------|--------------|--------------|
| 2864 |              | not determined |              |              |
| 2912 | 4.463        | < 1            | 5.160        | 22.671       |
| 2976 |              |                |              |              |
| 2977 | not detected | not detected   | not detected | not detected |
| 3015 | <10          | <10            | <10          | <10          |
| 3100 | <10          | <10            | <10          | <20          |
| 3110 |              |                |              |              |
| 3116 |              |                |              |              |
| 3118 | <5           | <5             | <5           | <5           |
| 3172 |              |                |              |              |
| 3182 | not analyzed | not analyzed   | not analyzed | not analyzed |
| 3185 | <10          | <10            | <10          | <20          |
| 3199 | Not tested   | None detected  | Not tested   | Not tested   |
| 3214 | <20          | <20            | <20          | <20          |
| 3218 |              |                |              |              |
| 3225 |              |                |              |              |
| 3228 |              |                |              |              |
| 8005 |              |                |              |              |

lab 2424 first reported Se 0.015; Sr 1.01; Zn 0,02

## **APPENDIX 3** Analytical Details

| lab          | ISO17025 accr. | Sample intake       | Acid used for the digestion       | Concentration of the acid (%)                 |
|--------------|----------------|---------------------|-----------------------------------|-----------------------------------------------|
| 210          | Yes            |                     |                                   |                                               |
| 339          | Yes            | 0,1 g               | HNO3, H2O2, HF                    | 16% HNO3, 4% H2O2, 4% HF                      |
| 551          | Yes            | 0.1 grams           | HNO3(6mL) - HF (2mL)              | 050/                                          |
| 623          | Yes            | 0.1                 | HNO3 & H2O2                       | 65%                                           |
| 840          | Yes            | 0.3g                | 7HNO3:2HCI                        | 14%                                           |
| 841          | <br>V          | 0.1g                | HNO3+HCI+H2O2                     | 0.70/                                         |
| 1051         | Yes            | 0.18                | HNO3                              | 67%                                           |
| 1213<br>2121 | Yes<br>Yes     | 0.5g<br>50 mg       | HNO3 + H2O + HCI<br>Nitric Acid   | 69.5%                                         |
| 2132         | Yes            | 0.06g               | HNO3+H2O2                         | 65% HNO3                                      |
| 2137         | Yes            | 0.00g<br>0.05       | HNO3                              | 70%                                           |
| 2138         |                | 0.03                | TINOS                             | 1070                                          |
| 2139         | Yes            | 0.05 grams          | HNO3, HCI, HF                     | about 25%                                     |
| 2156         | Yes            | 0.03 grams<br>0.1 g | Nitric Acid and Hydrochloric Acid | Nitric acid 65%, Hydrochloric acid 37%.       |
| 2165         | Yes            | 0.1g nearest        | 2.5mL conc. HNO3                  | Nitric Acid 69.0%~70.0%                       |
| 2100         | 163            | 0.0001g             | 2.5ITE COILC. LINOS               | Nuite Acid 03.070 7 0.070                     |
| 2170         | Yes            | 0.1q                | Nitric Acid                       | 65%                                           |
| 2182         | Yes            | 0.19                | Nitro Acid                        | 0070                                          |
| 2184         | Yes            | 0.1g                | nitric acid                       | 20%                                           |
| 2216         | Yes            | #23550 - 0.0725 g   | Nitric acid                       | ~67%                                          |
| 2210         | 100            | #23551 - 0.0688 g   | THIRD GOIG                        | 01 70                                         |
| 2256         | Yes            | 23550 : 0.0839g     | HNO3                              | 69%-70%                                       |
|              |                | 23551: 0.1047g      |                                   | 00.76 1.0.76                                  |
| 2258         | No             | 0.0226              | nitric                            | 40%                                           |
| 2287         | Yes            | 0.1g                | NO3+HCL                           | 5%                                            |
| 2290         | Yes            | 0.19                | 1100-1102                         | 070                                           |
| 2294         | Yes            | #23550: 0.0505 g    | Nitric Acid Baker Instra          | 8.34%                                         |
| 2204         | 100            | #23551: 0.0503 g    | Titlle / told Baker motid         | 0.0476                                        |
| 2296         | Yes            | 100mg               | 10ml of 43% (m/m) Nitric Acid and | 10ml of 43% (m/m) Nitric Acid and 50ml of 37% |
| 2200         | 100            | roomg               | 50ml of 37% (m/m) Hydrochloric    | (m/m) Hydrochloric Acid                       |
|              |                |                     | Acid                              | ()) 4 /4                                      |
| 2301         |                |                     |                                   |                                               |
| 2310         | Yes            | 0.2gram             | Conc.nitric acid                  | 69-70%                                        |
| 2311         | Yes            | 0.05                | Nitric Acid                       | 69                                            |
| 2314         | Yes            | 0.1 gms             | Nitric acid                       | 69%                                           |
| 2326         | Yes            | S#23550 =           | HNO3 + H2O2                       | 65% + 28 %                                    |
|              |                | 0.241GM S#23551     |                                   |                                               |
|              |                | = 0.2062GM          |                                   |                                               |
| 2330         | Yes            | 100 mg              | HNO3 + H2O2                       | 65% HNO3 30% H2O2                             |
| 2347         | Yes            | 0.1g                | 6.5ml HNO3+1ml H2O2               | 25%                                           |
| 2350         | Yes            | approxximately      | Nitric acid                       | Nitric acid 70 %                              |
|              |                | 0.1g                |                                   |                                               |
| 2355         | Yes            | 0.2 g               | #23550:10 mLHNO3+2 mLH2O2         | 22%                                           |
|              |                |                     | #23551:7 mLHNO3+1 mLHCl+2         |                                               |
|              |                |                     | mLHF                              |                                               |
| 2357         |                |                     |                                   |                                               |
| 2358         | Yes            | 0.25g               | Nitric Acid                       | 65%                                           |
| 2365         | Yes            | 0.15g               | HBF4,H2O2,HNO3                    |                                               |
| 2366         |                |                     |                                   |                                               |
| 2369         |                |                     |                                   |                                               |
| 2370         | Yes            | 0.1 g               | nitric acid 、hydrofluoric acid    | 20% nitric acid、8% hydrofluoric acid          |
| 2373         | Yes            | 0.1g                | nitric acid                       | 65%~68%                                       |
| 2375         | Yes            | 0.1 gram            | HNO3 + H2O2                       |                                               |
| 2380         | Yes            | 0.05 gm             | 65% Nitric acid and 30% Hydrogen  | 15%                                           |
|              |                |                     | peroxide                          |                                               |
| 2381         | Yes            | 0.05 gm             | Nitric Acid                       | 65%                                           |
| 2382         | Yes            | 0.5g                | nitric acid、hydrochloric acid     | 10%                                           |
| 2384         | Yes            | 0.1grams            | nitric acid                       | 65%                                           |
| 2385         | Yes            | ~0.12               | Nitric acid / hydrochlorid acid   | 67-69 % / 34-37 %                             |
| 2392         | Yes            | 0.5 g               | HNO3 : H2O2 10 ml : 1 ml          | Nitric acid 65 % Hydrogen peroxide 30%        |
| 2406         | Yes            | Sample #23550:      | Nitric acid                       | 69%                                           |
|              |                | 0.0415g Sample      |                                   |                                               |
|              | .,             | #23551: 0.0374g     | 10100                             | 00 = 100                                      |
| 2410         | Yes            | 0.05 g              | HNO3                              | 69 ~ 71 %                                     |
| 2424         | Yes            | 0.1 g               | HCI                               | 0.25                                          |
| 2426         | Yes            | #23550 0.1132 g     | Nitric Acid                       | 25%                                           |
|              | V              | #23551 0.1025 g     | 0                                 | 50/118100                                     |
| 0100         | Yes            | 0.1005g             | 3mlHNO3+1mlHCl                    | 5%HNO3                                        |
| 2429         |                |                     |                                   | E0/                                           |
| 2431         | Yes            | 0.1                 | HNO3, HCI                         | 5%                                            |
|              |                |                     |                                   | 5%                                            |

| lab  | ISO17025 accr. | Sample intake                                        | Acid used for the digestion                                 | Concentration of the acid (%)                                   |
|------|----------------|------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| 2459 | Yes            | 0.1gm                                                | HNO3 & H2O2                                                 | 69%                                                             |
| 2460 |                | <u> </u>                                             |                                                             |                                                                 |
| 2480 | Yes            | 0.2g                                                 | HCI / HNO3                                                  |                                                                 |
| 2492 | Yes            | 0.1g                                                 | nitric acid                                                 | 69%                                                             |
| 2503 | Yes            | 0,1015 for 23550<br>and 0,1075 for<br>23551          | HCI                                                         | 0.07 M                                                          |
| 2504 | Yes            | 0.10-0.125 g                                         | Nitric acid , HF , Hydrogenperoxide                         | 10%                                                             |
| 2511 |                |                                                      |                                                             |                                                                 |
| 2529 | No             | 0.030 grams per<br>trial, three trials per<br>sample | Nitric acid, 5 mL                                           | 68-70% (v/v)                                                    |
| 2567 | Yes            | 0.1                                                  | Nitric acid                                                 | 65                                                              |
| 2572 |                |                                                      |                                                             |                                                                 |
| 2573 |                |                                                      |                                                             |                                                                 |
| 2582 | Yes            | #23550 - 0.1020<br>#23551 - 0.1020                   | Con.HNO3                                                    | 69%                                                             |
| 2590 | Yes            | 0.1 gr                                               | HNO3                                                        | 2.5%                                                            |
| 2622 | Yes            | 0.1147                                               | Nitric acid                                                 | 65                                                              |
| 2678 | Yes            | 0.1grams                                             | Nitric acid                                                 | 67                                                              |
| 2734 | Yes            | 0.25                                                 | HNO3                                                        | 69%                                                             |
| 2741 | Yes            | 0.1g                                                 | HNO3 + H2O2                                                 | 3% (v/v)                                                        |
| 2799 | Yes            | 210mg                                                | Conc. HNO3                                                  | 65%                                                             |
| 2834 | Yes            | 0,1 q                                                | HNO3 and HCI                                                | HNO3: 65% HCI: 37 %                                             |
| 2835 | Yes            | 0.2 g (sample)                                       | HNO3 H202                                                   | HNO3-69.50 % H202-30.32 %                                       |
| 2864 | Yes            | 0.1 grams                                            | HNO3/HCI=1:3                                                | HNO3 65% HCL 37%                                                |
| 2912 | Yes            | 0.05                                                 | nitric acid                                                 | 11100 0070 1102 0770                                            |
| 2976 | No             | 0.10a                                                | 5ml HNO3                                                    | HNO3 65%                                                        |
| 2977 | Yes            | 0,1 g                                                | HNO3, HCI, HF                                               | about 10%                                                       |
| 3015 | Yes            | 0.1                                                  | HNO3                                                        | 65                                                              |
| 3100 | Yes            | #23550:0.1051g;<br>#23551:0.1002g                    | nitric acid                                                 | 65%~68%                                                         |
| 3110 |                |                                                      |                                                             |                                                                 |
| 3116 | Yes            | #23550: 0.05<br>#23551: 0.1                          | Nitric acid                                                 | Concentrated                                                    |
| 3118 | Yes            | 0,1 gram                                             | HNO3 H2O2                                                   | HNO3 65% H2O2 30%                                               |
| 3172 | Yes            | -                                                    |                                                             |                                                                 |
| 3182 | Yes            | 0.1 g                                                | Nitric acid                                                 | 65%                                                             |
| 3185 | Yes            | 0.1g                                                 | Concentrated nitric acid and concentrated hydrochloric acid | Concentrated nitric acid:68% Concentrated hydrochloric acid:37% |
| 3199 | Yes            | #23550 = 0.1719 g<br>#23551 = 0.2113 g               | Nitric                                                      | 40% Nitric                                                      |
| 3214 | Yes            | #23550:0.1064g<br>#23551:0.1118g                     | 9ml HNO3 , 3ml HCl , 1m IHF                                 | 50%                                                             |
| 3218 | Yes            | 0.1g                                                 | HNO3+HCI                                                    | 65%HNO3,36.5%HCI                                                |
| 3225 | Yes            | 0.1                                                  | HNO3                                                        | 67                                                              |
| 3228 | Yes            | 0.1g                                                 | HNO3                                                        | 65%                                                             |
| 8005 | Yes            | 0.1                                                  | Nitric acid                                                 | Concentrated                                                    |

### **APPENDIX 4**

### Number of participants per country

- 2 labs in BANGLADESH
- 1 lab in BRAZIL
- 2 labs in CAMBODIA
- 3 labs in FRANCE
- 2 labs in GERMANY
- 1 lab in GUATEMALA
- 12 labs in HONG KONG
- 3 labs in INDIA
- 3 labs in INDONESIA
- 6 labs in ITALY
- 1 lab in JAPAN
- 5 labs in KOREA, Republic of
- 2 labs in MALAYSIA
- 2 labs in MEXICO
- 1 lab in MOROCCO
- 17 labs in P.R. of CHINA
- 4 labs in PAKISTAN
- 1 lab in PORTUGAL
- 2 labs in SINGAPORE
- 1 lab in SRI LANKA
- 3 labs in TAIWAN
- 3 labs in THAILAND
- 2 labs in TUNISIA
- 1 lab in TURKEY
- 5 labs in U.S.A.
- 1 lab in UNITED ARAB EMIRATES
- 1 lab in UNITED KINGDOM
- 7 labs in VIETNAM

#### **APPENDIX 5**

#### **Abbreviations**

C = final test result after checking of first reported suspect test result

D(0.01) = outlier in Dixon's outlier test
D(0.05) = straggler in Dixon's outlier test
G(0.01) = outlier in Grubbs' outlier test
G(0.05) = straggler in Grubbs' outlier test
DG(0.01) = outlier in Double Grubbs' outlier test
DG(0.05) = straggler in Double Grubbs' outlier test

R(0.01) = outlier in Rosner's outlier test R(0.05) = straggler in Rosner's outlier test

E = calculation difference between reported test result and result calculated by iis

W = test result withdrawn on request of participant ex = test result excluded from statistical evaluation

n.a. = not applicable
n.e. = not evaluated
n.d. = not detected
fr. = first reported

f+? = possibly a false positive test result? f-? = possibly a false negative test result?

#### Literature

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ISO5725:86
- 3 ISO5725 parts 1-6:94
- 4 ISO13528:05
- 5 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 6 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 7 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 8 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 9 Analytical Methods Committee, Technical Brief, No 4, January 2001
- 10 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002)
- 11 W. Horwitz and R. Albert, J. AOAC Int, <u>79</u>, <u>3</u>, 589-621, (1996)
- Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2), 165-172, (1983)
- 13 Update on the Global Status of Legal Limits on Lead in Paint December 2020, Publication developed by the UN Environment in partnership with WHO and US EPA, the Chair of the Lead Paint Alliance.